Isoform specificity of N-deacetyl ketoconazole by human and rabbit flavin-containing monooxygenases. (49/766)

N-Deacetyl ketoconazole (DAK) is the major metabolite of orally administered ketoconazole. This major metabolite has been demonstrated to be further metabolized predominately by the flavin-containing monooxygenases (FMOs) to the secondary hydroxylamine, N-deacetyl-N-hydroxyketoconazole (N-hydroxy-DAK) by adult and postnatal rat hepatic microsomes. Our current investigation evaluated the FMO isoform specificity of DAK in a pyrophosphate buffer (pH 8.8) containing the glucose 6-phosphate NADPH-generating system. cDNA-expressed human FMOs (FMO1, FMO3, and FMO5) and cDNA-expressed rabbit FMOs (FMO1, FMO2, FMO3, and FMO5) were used to assess the metabolism of DAK to its subsequent FMO-mediated metabolites by HPLC analysis. Human and rabbit cDNA-expressed FMO3 resulted in extensive metabolism of DAK in 1 h (71.2 and 64.5%, respectively) to N-hydroxy-DAK (48.2 and 47.7%, respectively) and two other metabolites, metabolite 1 (11.7 and 7.8%, respectively) and metabolite 3 (10.5 and 10.0%, respectively). Previous studies suggest that metabolite 1 is the nitrone formed after successive FMO-mediated metabolism of N-hydroxy-DAK. Moreover, these studies display similar metabolic profiles seen with adult and postnatal rat hepatic microsomes. The human and rabbit FMO1 metabolized DAK predominately to the N-hydroxy-DAK in 1 h (36.2 and 25.3%, respectively) with minimal metabolism to the other metabolites (+info)

Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement of CYP2D and CYP3A. (50/766)

Stereoselective metabolism of cibenzoline succinate, an oral antiarrhythmic drug, was investigated on hepatic microsomes from humans and rats and microsomes from cells expressing human cytochrome P450s (CYPs). Four main metabolites, M1 (p-hydroxycibenzoline), M2 (4,5-dehydrocibenzoline), and unknown metabolites M3 and M4, were formed by human and rat liver microsomes. The intrinsic clearance (CL(int)) of the M1 formation from R(+)-cibenzoline was 23-fold greater than that of S(-)-cibenzoline in human liver microsomes, whereas the R(+)/S(-)-enantiomer ratio of CL(int) for M2, M3, and M4 formation was 0.39 to 0.83. The total CL(int) for the formation of the four main metabolites from S(-)- and R(+)-cibenzoline was 1.47 and 1.64 microl/min/mg, respectively, suggesting that the total CL(int) in R(+)-enantiomer was slightly greater than that in S(-)-enantiomer in human liver microsomes. The M1 formation from R(+)-cibenzoline was highly correlated with bufuralol 1'-hydroxylation and CYP2D6 content and was inhibited by quinidine, a potent inhibitor of CYP2D6. Additionally, only microsomes containing recombinant CYP2D6 were capable of M1 formation. These results suggest that the M1 formation from R(+)-cibenzoline was catalyzed by CYP2D6. The formation of M2, M3, and M4 from S(-)- and R(+)-cibenzoline was highly correlated with testosterone 6beta-hydroxylation and CYP3A4 content. Ketoconazole, which is a potent inhibitor of CYP3A4/5, had a strong inhibitory effect on their formation, and the M4 formation from R(+)-cibenzoline was inhibited by quinidine by 45%. The formation of M2 was also inhibited by quinidine by 46 to 52% at lower cibenzoline enantiomers (5 microM), whereas the inhibition by quinidine was not observed at a higher substrate concentration (100 microM). In male rat liver microsomes, ketoconazole and quinidine inhibited the formation of the main metabolites, M1 and M3, >74% and 44 to 59%, respectively. These results provide evidence that CYP3A and CYP2D play a major role in the stereoselective metabolism of cibenzoline in humans and male rats.  (+info)

Cytochrome P450 3A4 in vivo ketoconazole competitive inhibition: determination of Ki and dangers associated with high clearance drugs in general. (51/766)

Assuming complete hepatic substrate metabolism and system linearity, quantitative effects of in vivo competitive inhibition are investigated. Following oral administration of a substrate in the presence of a competitive inhibitor, determination of the inhibition constant (Ki) is possible when plasma concentration-time profiles of both substrate and inhibitor are available. When triazolam is the P450 3A4 substrate and ketoconazole the competitive inhibitor, Ki approximately 1.2 microg/mL in humans. The effects of competitive inhibition can be divided into two components: first-pass hepatic metabolism and systemic metabolism. For drugs with high hepatic extraction ratios, the impact of competitive inhibition on hepatic first-pass metabolism can be particularly dramatic. For example, human terfenadine hepatic extraction goes from 95% in the absence of a competitive inhibitor to 35% in the presence of one (ketoconazole, 200 mg po Q 12 h dosed to steady-state). First-pass extraction therefore goes from 5% in the absence of the inhibitor to 65% in its presence. The combined effect on first-pass and systemic metabolism produces an approximate 37 fold increase in terfenadine area under the plasma concentration-time curve. Assuming intact drug is active and/or toxic, development of metabolized drugs with extensive first-pass metabolism should be avoided if possible, since inhibition of metabolism may lead to profound increases in exposure.  (+info)

Human in vivo competitive inhibition of P450 substrates: increased plasma concentrations as a function of hepatic extraction ratio and percent inhibition. (52/766)

The purpose of this note is to posit and discuss the concept of "competitive inhibition potential" (CIP), which is an in vivo index of the ability of a competitive inhibitor to elevate plasma concentrations of drug substrates, when the competitive inhibitor is administered at its usual and customary dose.  (+info)

Role of human cytochrome P450 3A4 in metabolism of medroxyprogesterone acetate. (53/766)

Medroxyprogesterone acetate (MPA) is a drug commonly used in endocrine therapy for advanced or recurrent breast cancer and endometrial cancer. The drug is extensively metabolized in the intestinal mucosa and in the liver. Cytochrome P450s (CYPs) involved in the metabolism of MPA were identified by using human liver microsomes and recombinant human CYPs. In this study, the overall metabolism of MPA was determined as the disappearance of the parent drug from an incubation mixture. The disappearance of MPA in human liver microsomes varied 2.6-fold among the 18 samples studied. The disappearance of MPA in the same panel of 18 human liver microsomes was significantly correlated with triazolam alpha-hydroxylase activity, a marker activity of CYP3A (r = 0.764; P < 0.001). Ketoconazole, an inhibitor of CYP3A4, potently inhibited the disappearance of MPA in 18 human liver microsomes. Anti-CYP3A antibody also inhibited 86% of the disappearance of MPA in human liver microsomes. Although sulfaphenazole (an inhibitor of CYP2C9) and S-mephenytoin (an inhibitor of CYP2C19) partially inhibited the disappearance of MPA, no effect of the anti-CYP2C antibody was observed. The disappearance of MPA did not correlate with either the activity metabolized via CYP2C9 (diclofenac 4'-hydroxylase activity) or the activity metabolized via CYP2C19 (S-mephenytoin 4'-hydroxylase activity). Among the 12 recombinant human CYPs (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5) studied, only CYP3A4 showed metabolic activity of MPA. These results suggest that CYP3A4 is mainly involved in the overall metabolism of MPA in human liver microsomes.  (+info)

Lipoproteins regulate expression of the steroidogenic acute regulatory protein (StAR) in mouse adrenocortical cells. (54/766)

The steroidogenic acute regulatory protein (StAR) is required for the movement of cholesterol from the outer to the inner mitochondrial membrane, the site of cholesterol side chain cleavage. Here we describe a novel form of regulation of StAR gene expression in steroidogenic cells. Treatment of Y-1 BS1 adrenocortical cells with either low density lipoprotein (LDL) or high density lipoprotein (HDL) increases expression of endogenous StAR mRNA and protein in a dose-dependent manner. Induction of StAR mRNA by lipoprotein requires basal cAMP-dependent protein kinase, since the inhibitor, R(p)-8-Br-cAMP, inhibited induction of StAR protein by LDL. Likewise, basal StAR expression or LDL induction of StAR protein was not detectable in Y-1 kin-8 cells which are deficient in cAMP-dependent protein kinase. Aminoglutethimide and ketoconazole were used to determine if side chain cleavage of lipoprotein-derived cholesterol is required for induction of StAR mRNA. Treatment with either drug alone induced StAR mRNA expression 1.5-3-fold, while induction of StAR in cells treated with either drug plus LDL, was equal to, or greater than, induction seen with either agent alone, suggesting that lipoprotein does not regulate StAR via generation of an oxysterol intermediate. Both LDL and HDL increased expression of a mouse -966 StAR promoter-reporter construct 1.5-2.5-fold, indicating that regulation occurs at the level of transcription. In contrast, neither lipoprotein was able to induce transcription from a -966 StAR promoter in which the steroidogenic factor-1 site at -135 was abolished, indicating that regulation of StAR transcription by lipoproteins requires steroidogenic factor-1. The regulation of StAR gene expression by lipoproteins may represent a positive feedback circuit which links cholesterol availability with steroidogenic output.  (+info)

(R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. (55/766)

Fluoxetine is one of the most widely prescribed selective serotonin reuptake inhibitors (SSRIs) that is marketed worldwide. However, details of its human hepatic metabolism have been speculative and incomplete, possibly due to the sensitivity of analytical techniques and selectivity of specific in vitro probes and reagents used. Studies with (R)-, (S)-, and racemic fluoxetine were undertaken to determine the stereospecific nature of its metabolism and estimate intrinsic clearance contributions of each CYP for fluoxetine N-demethylation. Measurable fluoxetine N-demethylase activity was catalyzed by CYP1A2, -2B6, -2C9, -2C19, -2D6, -3A4, and -3A5. All enzymes catalyzed this reaction for both enantiomers and the racemate, and intrinsic clearance values were similar for the enantiomers for all CYP enzymes except CYP2C9, which demonstrated stereoselectivity for R- over the S-enantiomer. Scaling the intrinsic clearance values for the individual CYP enzymes to estimate contributions of each in human liver microsomes suggested that CYP2D6, CYP2C9, and CYP3A4 contribute the greatest amount of fluoxetine N-demethylation in human liver microsomes. These data were corroborated with the examination of the effects of CYP-specific inhibitors quinidine (CYP2D6), sulfaphenazole (CYP2C9), and ketoconazole (CYP3A4) on fluoxetine N-demethylation in pooled human liver microsomes. Together, these findings suggest a significant role for the polymorphically expressed CYP2D6 in fluoxetine clearance and are consistent with reports on the clinical pharmacokinetics of fluoxetine.  (+info)

The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate. (56/766)

The goals of the present study were to identify the enzyme responsible for metabolism of itopride hydrochloride (itopride) and to evaluate the likelihood of drug interaction involving itopride. In human liver microsomes, the involvement of flavin-containing monooxygenase in N-oxygenation, the major metabolic pathway of itopride, was indicated by the following results: inhibition by methimazole and thiourea, heat inactivation, and protection against heat inactivation by NADPH. When the effects of ketoconazole on the metabolism of itopride, cisapride, and mosapride citrate (mosapride) were examined using human liver microsomes, ketoconazole strongly inhibited the formation of the primary metabolites of cisapride and mosapride, but not itopride. Other cytochrome P450 (CYP) 3A4 inhibitors, cimetidine, erythromycin, and clarithromycin, also inhibited the metabolism of cisapride and mosapride. In an in vivo study, itopride (30 mg/kg), cisapride (1.5 mg/kg), or mosapride (3 mg/kg) was orally administered to male rats with or without oral pretreatment with ketoconazole (120 mg/kg) twice daily for 2 days. The ketoconazole pretreatment significantly increased the area under the serum concentration curve and the maximum serum concentration of cisapride and mosapride but had no significant effect on the pharmacokinetics of itopride. In addition, itopride did not inhibit five specific CYP-mediated reactions of human liver microsomes. These results suggest that itopride is unlikely to alter the pharmacokinetics of other concomitantly administered drugs.  (+info)