Cystic fibrosis transmembrane conductance regulator-mediated corneal epithelial cell ingestion of Pseudomonas aeruginosa is a key component in the pathogenesis of experimental murine keratitis. (1/714)

Previous findings indicate that the cystic fibrosis transmembrane conductance regulator (CFTR) is a ligand for Pseudomonas aeruginosa ingestion into respiratory epithelial cells. In experimental murine keratitis, P. aeruginosa enters corneal epithelial cells. We determined the importance of CFTR-mediated uptake of P. aeruginosa by corneal cells in experimental eye infections. Entry of noncytotoxic (exoU) P. aeruginosa into human and rabbit corneal cell cultures was inhibited with monoclonal antibodies and peptides specific to CFTR amino acids 108 to 117. Immunofluorescence microscopy and flow cytometry demonstrated CFTR in the intact murine corneal epithelium, and electron microscopy showed that CFTR binds to P. aeruginosa following corneal cell ingestion. In experimental murine eye infections, multiple additions of 5 nM CFTR peptide 103-117 to inocula of either cytotoxic (exoU+) or noncytotoxic P. aeruginosa resulted in large reductions in bacteria in the eye and markedly lessened eye pathology. Compared with wild-type C57BL/6 mice, heterozygous DeltaF508 Cftr mice infected with P. aeruginosa had an approximately 10-fold reduction in bacterial levels in the eye and consequent reductions in eye pathology. Homozygous DeltaF508 Cftr mice were nearly completely resistant to P. aeruginosa corneal infection. CFTR-mediated internalization of P. aeruginosa by buried corneal epithelial cells is critical to the pathogenesis of experimental eye infection, while in the lung, P. aeruginosa uptake by surface epithelial cells enhances P. aeruginosa clearance from this tissue.  (+info)

Pathogenesis of experimental Pseudomonas keratitis in the guinea pig: bacteriologic, clinical, and microscopic observations. (2/714)

Uniformly severe corneal infections were produced in guinea pigs by intracorneal injection of about 10 viable Pseudomonas aeruginosa. After a brief lag period, multiplication of bacteria was rapid, reaching geometric means of 280,000 after 24 hr and of 5 million after 48 hr. Within 8 hr after inoculation, polymorphonuclear leukocytes (PMNs) began to infiltrate the anterior two thirds of the stroma. Stromal cells adjacent to the injection site became necrotic and appeared to be engulfed by PMNs. By 14 to 16 hr, an abscess containing a dense aggregate of PMNs and multiplying bacteria developed in the central stroma. By 16 to 24 hr, collagen breakdown was apparent within and around the abscess. Ultrastructural evidence of collagen breakdown included loss of intact collagen fibrils, tactoid formation, and accumulation of amorphous electron-dense material. The area of liquefactive necrosis gradually enlarged, and many corneas perforated after 3 to 4 days. Because the course of infection is highly reproducible, this model should prove useful for many studies of experimental Pseudomonas keratitis.  (+info)

Bacteriologic cure of experimental Pseudomonas keratitis. (3/714)

Two long-term therapy trials with high concentrations of antibiotic were carried out to determine the duration of therapy required to achieve bacteriologic cure of experimental Pseudomonas keratitis in guinea pigs. In the first study, corneas still contained Pseudomonas after 4 days of continual topical therapy with either tobramycin 400 mg/ml, amikacin 250 mg/ml, ticarcillin 400 mg/ml, or carbenicillin 400 mg/ml. In an 11-day trial of topical therapy with tobramycin 20 mg/ml, 34 of 36 corneas grew no Pseudomonas after 6 or more days of therapy. The bacteriologic response to therapy in this model occurred in two phases. About 99.9% or more of the organisms in the cornea were killed in the first 24 hr of therapy. The numbers of bacteria remaining in the cornea declined gradually over the next several days until the corneas were sterile. Optimal antibiotic therapy may include two stages: initial intensive therapy with high concentrations of antibiotic applied frequently to achieve a large rapid decrease in numbers of organisms in the cornea, followed by prolonged, less intensive therapy to eradicate organisms and prevent relapse.  (+info)

Streptococcal keratitis after myopic laser in situ keratomileusis. (4/714)

A 24-year-old healthy male underwent uncomplicated laser in situ keratomileusis (LASIK) in left eye. One day after the surgery, he complained of ocular pain and multiple corneal stromal infiltrates had developed in left eye. Immediately, the corneal interface and stromal bed were cleared, and maximal antibiotic treatments with fortified tobramycin (1.2%) and cefazolin (5%) were given topically. The causative organism was identified as 'Streptococcus viridans' both on smear and culture. Two days after antibiotic therapy was initiated, the ocular inflammation and corneal infiltrates had regressed and ocular pain was relieved. One month later, the patient's best corrected visual acuity had returned to 20/20 with -0.75 -1.00 x 10 degrees, however minimal stromal scarring still remained. This case demonstrates that microbial keratitis after LASIK, if treated promptly, does not lead to a permanent reduction in visual acuity.  (+info)

Expression of interleukin-6 in the cornea in response to infection with different strains of Pseudomonas aeruginosa. (5/714)

Strains of Pseudomonas aeruginosa causing keratitis can be either cytotoxic (6206) or invasive (6294), while a strain (Paer1) causing contact lens-induced acute red eye has been shown to be neither. In situ hybridization was used to examine the location and identity of cells expressing interleukin-6 (IL-6) mRNA in the murine cornea and changes in expression in response to infection with different strains of P. aeruginosa. The number of IL-6-positive cells was determined by image analysis. IL-6 protein levels were measured by an enzyme-linked immunosorbent assay. BALB/c mice were challenged by use of the wounded-cornea model with P. aeruginosa 6294, 6206, or Paer1 (2 x 10(6) CFU). At time intervals up to 24 h, postchallenge corneal tissue was probed for IL-6 mRNA. IL-6 mRNA expression was rapidly elevated in the epithelium in response to strains 6294 and 6206. At the conclusion of the experiments, infiltrating inflammatory cells also stained positively for IL-6 mRNA. In contrast, corneas challenged with strain Paer1 showed significant upregulation of IL-6 mRNA only at 4 h postchallenge. Three distinct patterns of IL-6 mRNA expression in the mouse cornea occur in response to these three ocular isolates of P. aeruginosa. The data obtained for mRNA expression in the cornea for all three strains of P. aeruginosa correlated well with IL-6 protein analysis of whole-eye homogenates. Differences in the cytokine responses to these strains correlate with differences in the pathology associated with each strain and may offer an opportunity to develop strategies for the improved management of ocular inflammation.  (+info)

Immortalized human corneal epithelial cells for ocular toxicity and inflammation studies. (6/714)

PURPOSE: To develop a metabolically competent, human immortalized corneal epithelial cell line for use in toxicity and inflammation studies. METHODS: Primary corneal epithelial cells (P-CEPI) were immortalized by a recombinant simian virus (SV)40 T antigen retroviral vector defective for viral replication. The cells were grown in serum-free medium with the addition of bovine pituitary extract, cloned at passage 15 and one of the best-growing clones, CEPI-17-CL4, was extensively characterized for differentiation and metabolic characteristics of the human corneal epithelium. Methods used were immunostaining, reverse transcription-polymerase chain reaction (RT-PCR), northern blot analysis, and enzyme assays. RESULTS: The CEPI-17-CL4 cells showed a typical cobblestone morphology, grew to more than 200 passages and expressed the SV40 T antigen in the nucleus of every cell. Immunofluorescence staining for CEPI-17-CL4 cells was strongly positive for keratins (K)8, K18, and K19 and vimentin; weakly positive for K3, K13, and K17; and negative for K4, K7, and K14. Expression of cytokines (interleukin [IL]-1alpha, IL-1beta, IL-6, IL-8, tumor necrosis factor-alpha, and IL-ra), growth factors (transforming growth factor [TGF]-alpha, epidermal growth factors [EGF], EGF receptor [EGFR], TGF-beta1, TGF-beta2, and platelet-derived growth factor-beta) and cytochrome P450 enzymes (1A1, 2C, 2E1, and 3A5) was similar in CEPI-17-CL4 cells and human corneal epithelial samples obtained in biopsy. The CEPI-17-CL4 cells were metabolically competent for enzymes glutathione S-transferase, quinone reductase, aflatoxin aldehyde reductase, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase. CONCLUSIONS: The CEPI-17-CL4 cells are truly immortal and express an extensive array of cytokines, growth factors, and metabolic enzymes that resemble the original tissue. These characteristics, which remain stable up to high passage, will allow reproducible, mechanistic studies on toxicity, inflammation, and wound healing.  (+info)

Contact lens-induced infection--a new model of Candida albicans keratitis. (7/714)

PURPOSE: A model of experimental keratomycosis was established that mimics human disease in which the only fungi present are those that are actively growing within the cornea. METHODS: Dutch-belted rabbits received a subconjunctival injection of triamcinolone acetonide to one eye. One day later the epithelium was removed from the central cornea and a standardized inoculum of Candida albicans blastoconidia was placed on the corneal surface and covered with a contact lens. The lids were closed with a lateral tarsorrhaphy. After 24 hours, the lid sutures and contact lens were removed. Five days later the animals were killed, and their corneas were subjected to separate isolate recovery and histology studies. A group of similarly infected rabbits without corticosteroid injection served as controls. RESULTS: Both groups developed invasive corneal disease. Although isolate recovery was not significantly different from corticosteroid-treated rabbits compared with controls, fungal biomass was increased. Hyphal invasion was limited to the anterior cornea in control eyes, but penetrated deep stroma in most of the corticosteroid-treated rabbits. CONCLUSIONS: Invasive corneal disease can be established with a surface inoculum. Corticosteroid administration increased corneal penetration of hyphae. Quantitative isolate recovery is not a reliable measure of the fungal load within the cornea.  (+info)

Identification and antibiotic susceptibility of coagulase negative staphylococci isolated in corneal/external infections. (8/714)

AIMS: To identify and determine antibiotic susceptibility of coagulase negative staphylococci (CoNS) isolated from patients with chronic blepharitis, purulent conjunctivitis, and suppurative keratitis. METHODS: A retrospective review of all culture positive cases of chronic blepharitis, purulent conjunctivitis, and suppurative keratitis between July 1995 and December 1996 was performed. Cases in which CoNS were the sole isolates were analysed. Species identification was performed by using a commercially available standardised biochemical test system. Antibiotic susceptibility to penicillin, gentamicin, tetracycline, erythromycin, ciprofloxacin, and teicoplanin was determined by agar disc diffusion (Kirby-Bauer method). Teicoplanin resistance was confirmed by agar dilution. RESULTS: 42 Staphylococcus epidermidis, four S warneri, three S capitis, two S hominis, one each of S xylosus, S simulans, S equorum, and S lugdunensis were identified. 37 CoNS were penicillin resistant, 12 gentamicin resistant, 28 tetracycline resistant, 18 erythromycin resistant, four ciprofloxacin resistant, and one teicoplanin resistant (MIC, 32 microg/ml). In total, 16 strains were resistant to three or more antibiotics. CONCLUSION: Species of CoNS apart from S epidermidis may be isolated from patients with corneal and external infection. Antibiotic susceptibility of CoNS is unpredictable and multiresistant strains are common. As a result, antibiotic susceptibility testing should be performed in all cases of clinically significant ocular infections caused by CoNS.  (+info)