Novel nonsecosteroidal vitamin D mimics exert VDR-modulating activities with less calcium mobilization than 1,25-dihydroxyvitamin D3. (65/6758)

BACKGROUND: The secosteroid 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) acts through the vitamin D receptor (VDR) to elicit many activities that make it a promising drug candidate for the treatment of a number of diseases, including cancer and psoriasis. Clinical use of 1,25(OH)2D3 has been limited by hypercalcemia elicited by pharmacologically effective doses. We hypothesized that structurally distinct, nonsecosteroidal mimics of 1,25(OH)2D3 might have different activity profiles from vitamin D analogs, and set out to discover such compounds by screening small-molecule libraries. RESULTS: A bis-phenyl derivative was found to activate VDR in a transactivation screening assay. Additional related compounds were synthesized that mimicked various activities of 1,25(OH)2D3, including growth inhibition of cancer cells and keratinocytes, as well as induction of leukemic cell differentiation. In contrast to 1, 25(OH)2D3, these synthetic compounds did not demonstrate appreciable binding to serum vitamin D binding protein, a property that is correlated with fewer calcium effects in vivo. Two mimics tested in mice showed greater induction of a VDR target gene with less elevation of serum calcium than 1,25(OH)2D3. CONCLUSIONS: These novel VDR modulators may have potential as therapeutics for cancer, leukemia and psoriasis with less calcium mobilization side effects than are associated with secosteroidal 1,25(OH)2D3 analogs.  (+info)

Characterisation of membrane oligonucleotide-binding proteins and oligonucleotide uptake in keratinocytes. (66/6758)

Inadequate cellular compartmentalisation of plasmid DNA and antisense oligodeoxynucleotides (ODNs) is generally considered as a major limitation in their use. In this study, an approach combining in situ visual-isation of rhodamine-labelled ODNs and affinity modification of proteins by radiolabelled-alkylating ODN derivatives has been used to investigate the uptake of ODNs into keratinocytes. We confirm here that unmodified ODNs are efficiently taken up and accumulate in cell nuclei in primary keratinocytes as well as in HaCaT and A431 keratinocyte cell lines. Uptake is fast, irreversible, saturable and not significantly altered by incubation at low temperature. Affinity modification studies in keratinocyte cell lines has revealed two high-affinity, cell-specific interactions between ODNs and proteins of 61-63 kDa and 35 kDa. Trypsin pre-treatment of A431 cells and pre-incubation with polyanions, or with unlabelled nucleic acid competitors, inhibited the accumulation of rhodamine-labelled ODNs in nuclei as well as the affinity labelling of the 61-63 kDa doublet and 35 kDa ODN-binding proteins by reactive ODN derivatives. Finally, cell fractionation studies indicated that these ODN-binding proteins were essentially localised in the plasma membrane. Our results suggest that these ODN-binding proteins might be involved in the recognition and transport of ODNs into keratinocytes.  (+info)

HPV16 E6 oncoprotein inhibits apoptosis induced during serum-calcium differentiation of foreskin human keratinocytes. (67/6758)

Transfection of human papillomavirus (HPV) 16 E6 oncogene into foreskin primary human keratinocytes (PHKs) causes the formation of colonies of viable cells resistant to serum-calcium differentiation. To define the stage of keratinocyte differentiation inhibited by E6, we examined the response of PHKs to serum and calcium with respect to parameters of both growth and differentiation. The effect of HPV16 E6 was evaluated by infection with recombinant retroviruses encoding the E6 protein. Results of these studies indicated that terminal differentiation of cultured foreskin keratinocytes, triggered by serum and calcium, is a progressive process (2-3 weeks) that ends with cell death with characteristics of apoptosis. Human keratinocyte terminal differentiation was accompanied by time-related changes in the expression of cellular proteins involved in the control pathways of apoptosis, including downregulation of Bcl-2 and p53 and upregulation of Bax, which coincided with the appearance of morphological signs of apoptosis. E6 expression did not override the differentiation-associated G1 arrest or prevent the induction of squamous differentiation-specific markers, transglutaminase 1 and involucrin. E6 expression led, however, to a significant reduction in cell stratification and cell death by apoptosis, which correlated with prolonged expression of Bcl-2 and reduced elevation of Bax levels that occurred concomitant with a complete loss of p53. The data argue that E6 inhibits terminal differentiation of foreskin PHKs through inhibition of their differentiation-induced apoptotic program.  (+info)

Keratinocyte growth factor protects alveolar epithelium and endothelium from oxygen-induced injury in mice. (68/6758)

Keratinocyte growth factor (KGF) has been used successfully to prevent alveolar damage induced by oxygen exposure in rodents. However, this treatment was used intratracheally and before oxygen exposure, which limited its clinical application. In the present study, mice were treated with the recombinant human KGF intravenously before (days -2 and -1) or during (days 0 and +1) oxygen exposure. In both cases, lung damage was attenuated. KGF increased the number of cells incorporating bromodeoxyuridine (BrdU) in the septa and in bronchial epithelium of air-breathing mice but not of oxygen-exposed mice, indicating that the protective effect of KGF is not necessarily associated with proliferation. Oxygen-induced damage of alveolar epithelium and, unexpectedly, of endothelium was prevented by KGF treatment as seen by electron microscopy. We investigated the effect of KGF on different mechanisms known to be involved in oxygen toxicity. The induction of p53, Bax, and Bcl-x mRNAs during hyperoxia was to a large extent prevented by KGF. Surfactant proteins A and B mRNAs were not markedly modified by KGF. The anti-fibrinolytic activity observed in the alveoli during hyperoxia was to a large extent prevented by KGF, most probably by suppressing the expression of plasminogen activator inhibitor-1 (PAI-1) mRNA and protein. As PAI-1 -/- mice are more resistant to hyperoxia, KGF might act, at least in part, by decreasing the expression of this protease inhibitor and by restoring the fibrinolytic activity into the lungs.  (+info)

Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. (69/6758)

We have analyzed the proliferative and differentiation potential of human ocular keratinocytes. Holoclones, meroclones, and paraclones, previously identified in skin, constitute also the proliferative compartment of the ocular epithelium. Ocular holoclones have the expected properties of stem cells, while transient amplifying cells have variable proliferative potential. Corneal stem cells are segregated in the limbus, while conjunctival stem cells are uniformly distributed in bulbar and forniceal conjunctiva. Conjunctival keratinocytes and goblet cells derive from a common bipotent progenitor. Goblet cells were found in cultures of transient amplifying cells, suggesting that commitment for goblet cell differentiation can occur late in the life of a single conjunctival clone. We found that conjunctival keratinocytes with high proliferative capacity give rise to goblet cells at least twice in their life and, more importantly, at rather precise times of their life history, namely at 45-50 cell doublings and at approximately 15 cell doublings before senescence. Thus, the decision of conjunctival keratinocytes to differentiate into goblet cells appears to be dependent upon an intrinsic "cell doubling clock. " These data open new perspectives in the surgical treatment of severe defects of the anterior ocular surface with autologous cultured conjunctival epithelium.  (+info)

Early changes in murine epidermal cell phenotype by contact sensitizers. (70/6758)

In order to develop an in vitro predictive assay for the detection of contact sensitizers, we investigated the possible modulation of the expression of cell-surface molecules in the early phases of treatment of murine epidermal cells (EC) with known contact sensitizers. After in vitro treatment of Balb/c EC with the strong contact sensitizer, TNBS, Langerhans cells (LCs) demonstrated a rapid up-regulation of CD45, CD40, CD32/16 (Fc gamma RII/III) and CD23 (Fc epsilon RII) molecules. CD45 and CD40 were also rapidly up-regulated on the dendritic epidermal T cells. Interestingly, after treatment with this severe sensitizer, a marked induction of CD40 expression was found on a CD45 negative population, most probably keratinocytes. In contrast to these cell-surface molecules, I-Ad/I-Ed and CD90.2 expression were unchanged. No change was observed on the expression of CD45 and CD40 after treatment with a mild or a weak contact sensitizer, citral and citronellal respectively. In contrast, like TNBS, they up-regulated the expression of CD32/16 and CD23 on LCs. The irritant sodium dodecyl sulfate had no effect on all these cell-surface molecules. Our results indicated that in vitro, chemicals with allergic potential induced early specific phenotype changes that may represent an early-activated state of the cells. This state may be responsible for initiating the afferent phase of contact sensitivity in vivo. Based on these findings, it might be possible to develop an in vitro assay to reduce the number of experimental animals for a fast screening of contact sensitizers and for discriminating between mild contact sensitizers and irritants.  (+info)

Production of beta-defensin antimicrobial peptides by the oral mucosa and salivary glands. (71/6758)

beta-Defensins are cationic peptides with broad-spectrum antimicrobial activity that are produced by epithelia at mucosal surfaces. Two human beta-defensins, HBD-1 and HBD-2, were discovered in 1995 and 1997, respectively. However, little is known about the expression of HBD-1 or HBD-2 in tissues of the oral cavity and whether these proteins are secreted. In this study, we characterized the expression of HBD-1 and HBD-2 mRNAs within the major salivary glands, tongue, gingiva, and buccal mucosa and detected beta-defensin peptides in salivary secretions. Defensin mRNA expression was quantitated by RNase protection assays. HBD-1 mRNA expression was detected in the gingiva, parotid gland, buccal mucosa, and tongue. Expression of HBD-2 mRNA was detected only in the gingival mucosa and was most abundant in tissues with associated inflammation. To test whether beta-defensin expression was inducible, gingival keratinocyte cell cultures were treated with interleukin-1beta (IL-1beta) or bacterial lipopolysaccharide (LPS) for 24 h. HBD-2 expression increased approximately 16-fold with IL-1beta treatment and approximately 5-fold in the presence of LPS. Western immunoblotting, liquid chromatography, and mass spectrometry were used to identify the HBD-1 and HBD-2 peptides in human saliva. Human beta-defensins are expressed in oral tissues, and the proteins are secreted in saliva; HBD-1 expression was constitutive, while HBD-2 expression was induced by IL-1beta and LPS. Human beta-defensins may play an important role in the innate defenses against oral microorganisms.  (+info)

Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. (72/6758)

Epithelial-mesenchymal interactions play an important role in regulating tissue homeostasis and repair. For skin, the regulatory mechanisms of epidermal-dermal interactions were studied in cocultures of normal human epidermal keratinocytes (NEK) and dermal fibroblasts (HDF) rendered postmitotic by alpha-irradiation (HDFi). The expression kinetics of different cytokines and their receptors with presumed signalling function in skin were determined at the RNA and protein level in mono- and cocultured NEK and HDFi. In cocultured HDFi, mRNA and protein synthesis of keratinocyte growth factor (KGF) (FGF-7) was strongly enhanced, whereas in cocultured keratinocytes interleukin (IL)-1alpha and -1beta mRNA expression increased compared to monocultures. Thus we postulated that IL-1, which had no effect on keratinocyte proliferation, induced in fibroblasts the expression of factors stimulating keratinocyte proliferation, such as KGF. The functional significance of this reciprocal modulation was substantiated by blocking experiments. Both IL-1alpha and -1beta-neutralizing antibodies and IL-1 receptor antagonist significantly reduced keratinocyte proliferation supposedly through abrogation of KGF production, because IL-1 antibodies blocked the induced KGF production. These data indicate a regulation of keratinocyte growth by a double paracrine mechanism through release of IL-1 which induces KGF in cocultured fibroblasts. Thus IL-1, in addition to its proinflammatory function in skin, may play an essential role in regulating tissue homeostasis.  (+info)