Keratin 8 mutations in patients with cryptogenic liver disease. (1/144)

BACKGROUND: About 10 percent of patients who undergo liver transplantation have cryptogenic liver disease. In animal models, the absence of heteropolymeric keratins 8 and 18 or the presence of mutant keratins in hepatocytes causes or promotes liver disease. We have previously described a mutation in the keratin 18 gene in a patient with cryptogenic cirrhosis, but the importance of mutations in the keratin 8 and keratin 18 genes in such patients is unclear. METHODS: We tested for mutations in the keratin 8 and keratin 18 genes in purified genomic DNA isolated from 150 explanted livers and 89 peripheral-blood specimens from three groups of patients: 55 patients with cryptogenic liver disease; 98 patients with noncryptogenic liver disease, with causes that included alcohol use, autoimmunity, drug use, and viral infections; and 86 randomly selected inpatients and outpatients who provided blood to the hematology laboratory. RESULTS: Of the 55 patients with cryptogenic liver disease, 3 had glycine-to-cysteine mutations at position 61 (a highly conserved glycine) of keratin 8, and 2 had tyrosine-to-histidine mutations at position 53 of keratin 8. These mutations were not detected in the patients with other liver diseases or in the randomly selected patients. We verified the presence of the mutations in specimens of explanted livers by protein analysis and by the detection of unique restriction-enzyme cleavage sites. In transfected cells, the glycine-to-cysteine mutation limited keratin-filament reorganization when the cells were exposed to oxidative stress. In contrast, the tyrosine-to-histidine mutation destabilized keratin filaments when transfected cells were exposed to heat or okadaic acid stress. CONCLUSIONS: Mutations in the keratin 8 gene may predispose people to liver disease and may account for cryptogenic liver disease in some patients.  (+info)

Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. (2/144)

Keratins 8 and 18 belong to the keratin family of intermediate filament (IF) proteins and constitute a hallmark for all simple epithelia, including the liver. Hepatocyte IFs are made solely of keratins 8 and 18 (K8/K18). In these cells, the loss of one partner via a targeted null mutation in the germline results in hepatocytes lacking K8/K18 IFs, thus providing a model of choice for examining the function(s) of simple epithelium keratins. Here, we report that K8-null mouse hepatocytes in primary culture and in vivo are three- to fourfold more sensitive than wild-type (WT) mouse hepatocytes to Fas-mediated apoptosis after stimulation with Jo2, an agonistic antibody of Fas ligand. This increased sensitivity is associated with a higher and more rapid caspase-3 activation and DNA fragmentation. In contrast, no difference in apoptosis is observed between cultured K8-null and WT hepatocytes after addition of the Fas-related death-factors tumor necrosis factor (TNF) alpha or TNF-related apoptosis-inducing ligand. Analyses of the Fas distribution in K8-null and WT hepatocytes in culture and in situ demonstrate a more prominent targeting of the receptor to the surface membrane of K8-null hepatocytes. Moreover, altering Fas trafficking by disrupting microtubules with colchicine reduces by twofold the protection generated against Jo2-induced lethal action in K8-null versus WT hepatocytes. Together, the results strongly suggest that simple epithelium K8/K18 provide resistance to Fas-mediated apoptosis and that this protection occurs through a modulation of Fas targeting to the cell surface.  (+info)

Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. (3/144)

We screened the draft sequence of the human genome for genes that encode intermediate filament (IF) proteins in general, and keratins in particular. The draft covers nearly all previously established IF genes including the recent cDNA and gene additions, such as pancreatic keratin 23, synemin and the novel muscle protein syncoilin. In the draft, seven novel type II keratins were identified, presumably expressed in the hair follicle/epidermal appendages. In summary, 65 IF genes were detected, placing IF among the 100 largest gene families in humans. All functional keratin genes map to the two known keratin clusters on chromosomes 12 (type II plus keratin 18) and 17 (type I), whereas other IF genes are not clustered. Of the 208 keratin-related DNA sequences, only 49 reflect true keratin genes, whereas the majority describe inactive gene fragments and processed pseudogenes. Surprisingly, nearly 90% of these inactive genes relate specifically to the genes of keratins 8 and 18. Other keratin genes, as well as those that encode non-keratin IF proteins, lack either gene fragments/pseudogenes or have only a few derivatives. As parasitic derivatives of mature mRNAs, the processed pseudogenes of keratins 8 and 18 have invaded most chromosomes, often at several positions. We describe the limits of our analysis and discuss the striking unevenness of pseudogene derivation in the IF multigene family. Finally, we propose to extend the nomenclature of Moll and colleagues to any novel keratin.  (+info)

The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. (4/144)

Keratins 8 (K8) and 18 are the primary intermediate filaments of simple epithelia. Phosphorylation of keratins at specific sites affects their organization, assembly dynamics, and their interaction with signaling molecules. A number of keratin in vitro and in vivo phosphorylation sites have been identified. One example is K8 Ser-73, which has been implicated as an important phosphorylation site during mitosis, cell stress, and apoptosis. We show that K8 is strongly phosphorylated on Ser-73 upon stimulation of the pro-apoptotic cytokine receptor Fas/CD95/Apo-1 in HT-29 cells. Kinase assays showed that c-Jun N-terminal kinase (JNK) was also activated with activation kinetics corresponding to that of K8 phosphorylation. Furthermore, K8 was also phosphorylated on Ser-73 by JNK in vitro, yielding similar phosphopeptide maps as the in vivo phosphorylated material. In addition, co-immunoprecipitation studies revealed that part of JNK is associated with K8 in vivo, correlating with decreased ability of JNK to phosphorylate the endogenous c-Jun. Taken together, K8 is a new cytoplasmic target for JNK in Fas receptor-mediated signaling. The functional significance of this phosphorylation could relate to regulation of JNK signaling and/or regulation of keratin dynamics.  (+info)

Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. (5/144)

Keratin 8 (K8) serine 73 occurs within a relatively conserved type II keratin motif ((68)NQSLLSPL) and becomes phosphorylated in cultured cells and organs during mitosis, cell stress, and apoptosis. Here we show that Ser-73 is exclusively phosphorylated in vitro by p38 mitogen-activated protein kinase. In cells, Ser-73 phosphorylation occurs in association with p38 kinase activation and is inhibited by SB203580 but not by PD98059. Transfection of K8 Ser-73 --> Ala or K8 Ser-73 --> Asp with K18 generates normal-appearing filaments. In contrast, exposure to okadaic acid results in keratin filament destabilization in cells expressing wild-type or Ser-73 --> Asp K8, whereas Ser-73 --> Ala K8-expressing cells maintain relatively stable filaments. p38 kinase associates with K8/18 immunoprecipitates and binds selectively with K8 using an in vitro overlay assay. Given that K1 Leu-160 --> Pro ((157)NQSLLQPL --> (157)NQSPLQPL) leads to epidermolytic hyperkeratosis, we tested and showed that the analogous K8 Leu-71 --> Pro leads to K8 hyperphosphorylation by p38 kinase in vitro and in transfected cells, likely due to Ser-70 neo-phosphorylation, in association with significant keratin filament collapse upon cell exposure to okadaic acid. Hence, K8 Ser-73 is a physiologic phosphorylation site for p38 kinase, and its phosphorylation plays an important role in keratin filament reorganization. The Ser-73 --> Ala-associated filament reorganization defect is rescued by a Ser-73 --> Asp mutation. Also, disease-causing keratin mutations can modulate keratin phosphorylation and organization, which may affect disease pathogenesis.  (+info)

Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8. (6/144)

A zebrafish cDNA encoding a novel keratin protein was characterized and named keratin8, or krt8. krt8 expression was initiated at 4.5 hr postfertilization, immediately after the time of zygotic genome activation. The expression is limited to a single layer of envelope cells on the surface of embryos and, in later stages, it also appears in the innermost epithelial layer of the anterior- and posteriormost portions of the digestive tract. In adult, its expression was limited to the surface layer of stratified epithelial tissues, including skin epidermis and epithelia of mouth, pharynx, esophagus, and rectum but not in the gastral and intestinal epithelia. By using a 2.2-kb promoter from krt8, several stable green fluorescent protein (gfp) transgenic zebrafish lines were established. All of these transgenic lines displayed GFP expression in tissues mentioned above except for the rectum; therefore, the pattern of transgenic GFP expression is essentially identical to that of the endogenous krt8 mRNAs. krt8-GFP fusion protein was also expressed in zebrafish embryos under a ubiquitous promoter, and the fusion protein was capable of assembling into intermediate filaments only in the epithelia that normally expressed krt8 mRNAs, indicating the specificity of keratin assembly in vivo.  (+info)

Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. (7/144)

Despite playing a critical role in the development of naive T cells, the thymus is involuted with age. Whether a single age-associated defect or multiple aberrations contribute to thymic involution remains controversial. Here, we determined molecular aberrations in the thymocyte and epithelium compartments of the aging thymus. We demonstrated that total thymocyte numbers declined with a stepwise kinetics; clear demarcations occurred at 1.5, 3, 12 and 22 months of age. By quantitative PCR, a 2.4-fold reduction in the copies of signal joint TCR-excised circle (sjTREC)/10(5) thymocytes was first detected at 3 months; no further reduction observed thereafter. Nevertheless, the combined reductions in thymocyte numbers and sjTREC/10(5) cells caused a 7-fold decrease in sjTREC/thymus by 3 months, 21-fold by 18 months and 72-fold by 22 months as compared to 1 month. We showed aberration in expression of E2A, a transcription regulator critical for TCR beta rearrangement. While E2A expression declined 3-fold by 3 months and 18-fold by 7 months, expression of LMO2, a negative regulator of E2A activities, increased 5-fold by 18 months. Interestingly, expression of pre-T alpha and its transcriptional regulator HEB were not reduced with age. Furthermore, keratin-8 expression, specific for cortical thymic epithelium, declined 3-fold by 7 months and remained stable thereafter. In contrast, Foxn1 expression was reduced 3-fold by 3 months, 16-fold by 12 months and 37-fold by 18 months. IL-7 expression was not reduced until 7 months and reached 15-fold reduction by 22 months. Thus, the data demonstrate that thymic involution results not from a single defect, but culminates from an array of molecular aberrations in both the developing thymocytes and thymic epithelials.  (+info)

Formation of Mallory body-like inclusions and cell death induced by deregulated expression of keratin 18. (8/144)

Mallory bodies (MBs) are cytoplasmic inclusions that contain keratin 8 (K8) and K18 and are present in hepatocytes of individuals with alcoholic liver disease, nonalcoholic steatohepatitis, or benign or malignant hepatocellular neoplasia. Mice fed long term with griseofulvin are an animal model of MB formation. However, the lack of a cellular model has impeded understanding of the molecular mechanism of this process. Culture of HepG2 cells with griseofulvin has now been shown to induce both the formation of intracellular aggregates containing K18 as well as an increase in the abundance of K18 mRNA. Overexpression of K18 in HepG2, HeLa, or COS-7 cells also induced the formation of intracellular aggregates that stained with antibodies to ubiquitin and with rhodamine B (characteristics of MBs formed in vivo), eventually leading to cell death. The MB-like aggregates were deposited around centrosomes and disrupted the microtubular array. Coexpression of K8 with K18 restored the normal fibrous pattern of keratin distribution and reduced the toxicity of K18. In contrast, an NH(2)-terminal deletion mutant of K8 promoted the formation of intracellular aggregates even in the absence of K18 overexpression. Deregulated expression of K18, or an imbalance between K8 and K18, may thus be an important determinant of MB formation, which compromises the function of centrosomes and the microtubule network and leads to cell death.  (+info)