A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. (1/332)

A novel human gene (PLU-1) has been identified which shows a highly restricted expression in normal adult tissues but which is consistently expressed in breast cancers. A fragment of the PLU-1 cDNA was identified by differentially screening a fetal brain library with cDNAs prepared from ce-1 cells (a human mammary epithelial cell line overexpressing c-ErbB2) treated or untreated with the antibody 4D5, which inhibits c-ErbB2 phosphorylation. Clones covering the full cDNA sequence of 6.4 kilobases were isolated from a breast cancer cDNA library. Although expression of PLU-1 in ce-1 cells is regulated by signaling from c-ErbB2, the gene is expressed in all the breast cancer cell lines examined, in cells cultured from primary breast cancers, and in the invasive and in situ components of primary breast cancers. Translation of the open reading frame predicts a protein of 1544 amino acids, which contains three PHD/LAP motifs, a specific DNA-binding domain found in a Drosophila protein (dri) and novel domains showing extensive homology with other human and non human gene products. Transient transfection of cell lines with MYC-tagged PLU-1 showed the protein to be localized in the nucleus and associated with discrete foci. The presence of the dri motif and PHD/LAP fingers together with the clear nuclear localization and consistent expression in breast cancers, suggest a role for PLU-1 in regulating gene expression in breast cancers.  (+info)

Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. (2/332)

In a recent study, we identified frequent amplification of DNA copy number at chromosome 9p23-24 in cell lines derived from esophageal squamous cell carcinomas (ESCs), using comparative genomic hybridization. Because amplified regions often harbor oncogenes and/or other tumor-associated genes, and because 9p23-24 amplification had been reported in various other types of cancers, we used fluorescence in situ hybridization and Southern blot analysis to map the 9p23-24 amplicon. We then screened target genes/transcripts present within this amplicon by Northern blotting. With this strategy, we successfully cloned a novel gene, designated gene amplified in squamous cell carcinoma 1 (GASC1), that was amplified and overexpressed in several ESC cell lines. The deduced amino acid sequence of GASC1 contains two PHD-finger motifs and a PX domain. PHD-finger motifs are found in nuclear proteins that participate in chromatin-mediated transcriptional regulation and are present in a number of proto-oncogenes. Our findings suggest that overexpressed GASC1 may play an important role in the development and/or progression of various types of cancer including ESC.  (+info)

If phosphatidylserine is the death knell, a new phosphatidylserine-specific receptor is the bellringer. (3/332)

Recognition of phosphatidylserine (PtdSer) is essential for engulfment of apoptotic cells by mammalian phagocytes. Engagement of a new phosphatidylserine-specific receptor (PtdSerR) appears to be necessary for uptake of apoptotic cells. Many other mammalian receptors have been described to function in the clearance of apoptotic cells. The emerging picture is that many of these receptors may provide the strong adhesion needed to increase the likelihood of contact between the PtdSerR and its phospholipid ligand, which is required for uptake. Furthermore, stimulation of this receptor on different types of phagocytes by apoptotic cells, PtdSer-containing liposomes or an IgM monoclonal anti-PtdSer antibody initiates release of TGFbeta, known to be involved in the anti-inflammatory effects of apoptotic cells. Although highly homologous genes exist in C. elegans and Drosophila melanogaster, their role in engulfment of apoptotic cells remains to be determined.  (+info)

A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. (4/332)

Interstitial deletion or loss of chromosome 5, del(5q) or -5, is a frequent finding in myeloid leukemias and myelodysplasias, suggesting the presence of a tumor suppressor gene within the deleted region. In our search for this gene, we identified a candidate, 5qNCA (LOC51780), which lies within a consistently-deleted segment of 5q31. 5qNCA expresses a 7.2-kb transcript with a 5286-bp open reading frame which is present at high levels in heart, skeletal muscle, kidney, placenta, and liver as well as CD34+ cells and AML cell lines. 5qNCA encodes a 191-kD nuclear protein which contains a highly-conserved C-terminus containing a zinc finger with the unique spacing Cys-X2-Cys-X7-His-X2-Cys-X2-Cys-X4-Cys-X2-Cys and a jmjC domain, which is often found in proteins that regulate chromatin remodeling. Expression of 5qNCA in a del(5q) cell line results in suppression of clonogenic growth. Preliminary sequence results in AML and MDS samples and cell lines has revealed a possible mutation in the KG-1 cell line resulting in a THR to ALA substitution that has not been found in over 100 normal alleles to date. We propose 5qNCA is a good candidate for the del(5q) tumor suppressor gene based on its predicted function and growth suppressive activities, and suggest that further mutational and functional study of this interesting gene is warranted.  (+info)

Tethering and tickling: a new role for the phosphatidylserine receptor. (5/332)

Several receptors are implicated in apoptotic cell (AC) uptake by phagocytic cells; however, their relative dominance in mammalian systems remains to be established. New studies shed light on the role of the phosphatidyl serine (PS) receptor (PSR). Ligation of PSR by PS on AC surfaces is considered essential for signaling uptake of ACs that are tethered to phagocytes via other receptors.  (+info)

Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. (6/332)

Efficient phagocytosis of apoptotic cells is important for normal tissue development, homeostasis, and the resolution of inflammation. Although many receptors have been implicated in the clearance of apoptotic cells, the roles of these receptors in the engulfment process have not been well defined. We developed a novel system to distinguish between receptors involved in tethering of apoptotic cells versus those inducing their uptake. Our results suggest that regardless of the receptors engaged on the phagocyte, ingestion does not occur in the absence of phosphatidylserine (PS). Further, recognition of PS was found to be dependent on the presence of the PS receptor (PSR). Both PS and anti-PSR antibodies stimulated membrane ruffling, vesicle formation, and "bystander" uptake of cells bound to the surface of the phagocyte. We propose that the phagocytosis of apoptotic cells requires two events: tethering followed by PS-stimulated, PSR-mediated macropinocytosis.  (+info)

Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. (7/332)

Cystic fibrosis is characterized by an early and sustained influx of inflammatory cells into the airways and by release of proteases. Resolution of inflammation is normally associated with the orderly removal of dying apoptotic inflammatory cells through cell recognition receptors, such as the phosphatidylserine receptor, CD36, and alpha v integrins. Accordingly, removal of apoptotic inflammatory cells may be impaired in persistent inflammatory responses such as that seen in cystic fibrosis airways. Examination of sputa from cystic fibrosis and non-cystic fibrosis bronchiectasis patients demonstrated an abundance of apoptotic cells, in excess of that seen in patients with chronic bronchitis. In vitro, cystic fibrosis and bronchiectasis airway fluid directly inhibited apoptotic cell removal by alveolar macrophages in a neutrophil elastase-dependent manner, suggesting that elastase may impair apoptotic cell clearance in vivo. Flow cytometry demonstrated that neutrophil elastase cleaved the phosphatidylserine receptor, but not CD36 or CD32 (Fc gamma RII). Cleavage of the phosphatidylserine receptor by neutrophil elastase specifically disrupted phagocytosis of apoptotic cells, implying a potential mechanism for delayed apoptotic cell clearance in vivo. Therefore, defective airway clearance of apoptotic cells in cystic fibrosis and bronchiectasis may be due to elastase-mediated cleavage of phosphatidylserine receptor on phagocytes and may contribute to ongoing airway inflammation.  (+info)

Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. (8/332)

Lipoxins (LX) are eicosanoids with antiinflammatory activity in glomerulonephritis (GN) and inflammatory diseases, hypersensitivity, and ischemia reperfusion injury. It has been demonstrated that LXA(4) stimulates non-phlogistic phagocytosis of apoptotic polymorphonuclear neutrophils (PMN) by monocyte-derived macrophages (Mphi) in vitro, suggesting a role for LX as endogenous pro-resolution lipid mediators. It is here reported that LXA(4), LXB(4), the aspirin-triggered LX (ATL) epimer, 15-epi-LXB(4), and a stable synthetic analogue 15(R/S)-methyl-LXA(4) stimulate phagocytosis of exogenously administered excess apoptotic PMN by macrophages (M phi) in vivo in a classic model of acute inflammation, namely thioglycollate-induced peritonitis. Significant enhancement of phagocytosis in vivo was observed with 15-min exposure to LX and with intraperitoneal doses of LXA(4), LXB(4), 15(R/S)-methyl-LXA(4), and 15-epi-LXB(4) of 2.5 to 10 micro g/kg. Non-phlogistic LX-stimulated phagocytosis by M phi was sensitive to inhibition of PKC and PI 3-kinase and associated with increased production of transforming growth factor-beta(1) (TGF-beta(1)). LX-stimulated phagocytosis was not inhibited by phosphatidylserine receptor (PSR) antisera and was abolished by prior exposure of M phi to beta 1,3-glucan, suggesting a novel M phi-PMN recognition mechanism. Interestingly, the recently described peptide agonists of the LXA(4) receptor (MYFINITL and LESIFRSLLFRVM) stimulated phagocytosis through a process associated with increased TGF-beta(1) release. These data provide the first demonstration that LXA(4), LXB(4), ATL, and LX stable analogues rapidly promote M phi phagocytosis of PMN in vivo and support a role for LX as rapidly acting, pro-resolution signals in inflammation. Engagement of the LXR by LX generated during cell-cell interactions in inflammation and by endogenous LXR peptide agonists released from distressed cells may be an important stimulus for clearance of apoptotic cells and may be amenable to pharmacologic mimicry for therapeutic gain.  (+info)