Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. (73/1765)

Glucocorticoids are widely used in the therapy of inflammatory, autoimmune, and allergic diseases. As the end-effectors of the hypothalamic-pituitary-adrenal axis, endogenous glucocorticoids also play an important role in suppressing innate and cellular immune responses. Previous studies have indicated that glucocorticoids inhibit Th1 and enhance Th2 cytokine secretion. IL-12 promotes Th1 cell-mediated immunity, while IL-4 stimulates Th2 humoral-mediated immunity. Here, we examined the regulatory effect of glucocorticoids on key elements of IL-12 and IL-4 signaling. We first investigated the effect of dexamethasone on IL-12-inducible genes and showed that dexamethasone inhibited IL-12-induced IFN-gamma secretion and IFN regulatory factor-1 expression in both NK and T cells. This occurred even though the level of expression of IL-12 receptors and IL-12-induced Janus kinase phosphorylation remained unaltered. However, dexamethasone markedly inhibited IL-12-induced phosphorylation of Stat4 without altering its expression. This was specific, as IL-4-induced Stat6 phosphorylation was not affected, and mediated by the glucocorticoid receptor, as it was antagonized by the glucocorticoid receptor antagonist RU486. Moreover, transfection experiments showed that dexamethasone reduced responsiveness to IL-12 through the inhibition of Stat4-dependent IFN regulatory factor-1 promoter activity. We conclude that blocking IL-12-induced Stat4 phosphorylation, without altering IL-4-induced Stat6 phosphorylation, appears to be a new suppressive action of glucocorticoids on the Th1 cellular immune response and may help explain the glucocorticoid-induced shift toward the Th2 humoral immune response.  (+info)

Interferon-gamma induces AT(2) receptor expression in fibroblasts by Jak/STAT pathway and interferon regulatory factor-1. (74/1765)

The expression of angiotensin II type 2 (AT(2)) receptor is closely associated with cell growth, differentiation, and/or injury. We examined the effect of interferon (IFN)-gamma on AT(2) receptor expression in mouse fibroblast R3T3 cells and demonstrated that IFN-gamma treatment increased the expression of AT(2) receptor mRNA as well as its binding. Interferon regulatory factor (IRF)-1 was induced in mouse fibroblast R3T3 cells after IFN-gamma stimulation, and electrophoretic mobility shift assay showed an increase in IRF-1 binding with the IRF-specific binding sequence in the AT(2) receptor gene promoter region after IFN-gamma stimulation. The IRF-1 gene promoter contains an IFN-gamma-activated sequence (GAS) motif for possible binding of signal transducer(s) and activator(s) of transcription (STAT). Indeed, in R3T3 cells, IFN-gamma treatment resulted in rapid activation of Janus kinase (Jak) 1, Jak2, and STAT1 via tyrosine phosphorylation. Electrophoretic mobility shift assay with the GAS probe revealed increased STAT1 binding to the IRF-1 gene promoter in response to IFN-gamma stimulation. Transfection of GAS-binding oligonucleotides inhibited the effect of IFN-gamma on IRF-1 production, resulting in the AT(2) receptor trans-activation. Taken together, our data show that IFN-gamma upregulates AT(2) receptor expression in R3T3 cells via the activation of the intracellular Jak/STAT pathway and production of IRF-1.  (+info)

The role of disulfide-linked dimerization in interleukin-3 receptor signaling and biological activity. (75/1765)

Cysteine residues 86 and 91 of the beta subunit of the human interleukin (hIL)-3 receptor (hbetac) participate in disulfide-linked receptor subunit heterodimerization. This linkage is essential for receptor tyrosine phosphorylation, since the Cys-86 --> Ala (Mc4) and Cys-91 --> Ala (Mc5) mutations abolished both events. Here, we used these mutants to examine whether disulfide-linked receptor dimerization affects the biological and biochemical activities of the IL-3 receptor. Murine T cells expressing hIL-3Ralpha and Mc4 or Mc5 did not proliferate in hIL-3, whereas cells expressing wild-type hbetac exhibited rapid proliferation. However, a small subpopulation of cells expressing each mutant could be selected for growth in IL-3, and these proliferated similarly to cells expressing wild-type hbetac, despite failing to undergo IL-3-stimulated hbetac tyrosine phosphorylation. The Mc4 and Mc5 mutations substantially reduced, but did not abrogate, IL-3-mediated anti-apoptotic activity in the unselected populations. Moreover, the mutations abolished IL-3-induced JAK2, STAT, and AKT activation in the unselected cells, whereas activation of these molecules in IL-3-selected cells was normal. In contrast, Mc4 and Mc5 showed a limited effect on activation of Erk1 and -2 in unselected cells. These data suggest that whereas disulfide-mediated cross-linking and hbetac tyrosine phosphorylation are normally important for receptor activation, alternative mechanisms can bypass these requirements.  (+info)

Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. (76/1765)

Comparative genomic hybridization was applied for a comprehensive screening of frequently occurring net gains and losses of chromosomal subregions in small populations of CD30+ Hodgkin cells and their morphological variants. In 12 Hodgkin's lymphomas, recurrent gains were detected on chromosomal arms 2p, 9p, and 12q (in six, four, and five tumors, respectively) and distinct high-level amplifications were identified on chromosomal bands 4p16, 4q23-q24, and 9p23-p24. In Hodgkin cells with 9p23-p24 amplification, fluorescence in situ hybridization revealed an increased copy number of chromosomal sequences spanning the tyrosine kinase gene JAK2. Several of the imbalances described, in particular a gain in chromosomal arm 9p that includes JAK2 amplification, are similar to the genomic changes detected in primary mediastinal B-cell lymphoma.  (+info)

Regulation of Jak2 tyrosine kinase by protein kinase C during macrophage differentiation of IL-3-dependent myeloid progenitor cells. (77/1765)

Differentiation of macrophages from myeloid progenitor cells depends on a discrete balance between cell growth, survival, and differentiation signals. Interleukin-3 (IL-3) supports the growth and survival of myeloid progenitor cells through the activation of Jak2 tyrosine kinase, and macrophage differentiation has been shown to be regulated by protein kinase C (PKC). During terminal differentiation of macrophages, the cells lose their mitogenic response to IL-3 and undergo growth arrest, but the underlying signaling mechanisms have remained elusive. Here we show that in IL-3-dependent 32D myeloid progenitor cells, the differentiation-inducing PKC isoforms PKC-alpha and PKC-delta specifically caused rapid inhibition of IL-3-induced tyrosine phosphorylation. The target for this inhibition was Jak2, and the activation of PKC by 12-O-tetradecanoyl-phorbol-13-acetate treatment also abrogated IL-3-induced tyrosine phosphorylation of Jak2 in Ba/F3 cells. The mechanism of this regulation was investigated in 32D and COS7 cells, and the inhibition of Jak2 required catalytic activity of PKC-delta and involved the phosphorylation of Jak2 on serine and threonine residues by the associated PKC-delta. Furthermore, PKC-delta inhibited the in vitro catalytic activity of Jak2, indicating that Jak2 was a direct target for PKC-delta. In 32D cells, the inhibition of Jak2 either by PKC-delta, tyrosine kinase inhibitor AG490, or IL-3 deprivation caused a similar growth arrest. Reversal of PKC-delta-mediated inhibition by the overexpression of Jak2 promoted apoptosis in differentiating 32D cells. These results demonstrate a PKC-mediated negative regulatory mechanism of cytokine signaling and Jak2, and they suggest that it serves to integrate growth-promoting and differentiation signals during macrophage differentiation. (Blood. 2000;95:1626-1632)  (+info)

Analysis of mechanisms involved in the prevention of gamma irradiation-induced apoptosis by hGM-CSF. (78/1765)

Human granulocyte-macrophage colony-stimulating factor (hGM-CSF) induces proliferation and sustains viability of the mouse interleukin (IL)-3 dependent lymphoid cell line BA/F3 expressing the hGM-CSF receptor. Caspase-3 like enzyme activity and DNA fragmentation were augmented by depletion of this factor from the cell, and exposure to gamma irradiation accelerated kinetics of these events. Anti gamma irradiation-induced apoptosis occurred through various mutant GM-CSF receptors and only the box1 region was essential while the C terminal region, including tyrosine residues which are required for MAPK cascade activation, was dispensable. Consistent with this notion, the addition of PD98059 had no effect on this activity thereby indicating that activation of MAPK is not essential for the activity. As expected, gamma irradiation increased p53 protein and bax mRNA levels and the presence of hGM-CSF dramatically modulated bax/bcl-X(L) ratio. The PI-3K specific inhibitor wortmannin did not affect hGM-CSF dependent anti gamma irradiation induced apoptosis nor bcl-X(L) induction, thus bcl-X(L) but not PI-3K pathway seems to be involved in hGM-CSF dependent anti gamma irradiation-induced apoptosis. It is well documented that the boxl region is essential for GM-CSF dependent activation of JAK2 and JAK2 specific inhibitor AG490 suppressed anti gamma, irradiation-induced apoptosis by hGM-CSF. An artificial JAK2 activating molecule in which extracellular and the transmembrane of beta(c) fused with whole JAK2 can sustain BA/F3 cells survival and proliferation mIL-3 independently, but these cells are susceptible to gamma irradiation. Furthermore GyrB/Jak2, which can activate STAT5 but not the MAPK cascade nor survival of BA/F3 cells, also could not prevent gamma irradiation-induced apoptosis. Although JAK2 is essential for hGM-CSF dependent anti gamma irradiation-induced apoptosis, it appeared that JAK2 does not seem sufficient for the activity.  (+info)

Regulation of c-myc transcription by interleukin-2 (IL-2). Identification of a novel IL-2 response element interacting with STAT-4. (79/1765)

Regulation of c-myc expression is known to occur at the level of transcription initiation. However, the participating promoter elements and their cognate binding proteins have not been fully characterized. c-myc transcription can be stimulated by a number of cytokines including interleukin-2 (IL-2). We have identified a novel IL-2-responsive element, located in the 5'-flanking region of the c-myc gene, between nucleotides -1406 and -1387 (relative to the P2 promoter). This element belongs to the family of interferon-gamma activation site-like responsive elements and has the core sequence TTCCAATAA. We confirmed that IL-2-mediated signaling involves activation by phosphorylation of Jak2 tyrosine kinase and subsequently STAT4. The transcription factor STAT4 binds the TTCCAATAA motif within this responsive element and, therefore, is probably involved in enhancing c-myc transcription upon IL-2 stimulation. Our results propose participation of Jak2 and STAT4 in IL-2-induced up-regulation of c-myc.  (+info)

Epitope randomization redefines the functional role of glutamic acid 110 in interleukin-5 receptor activation. (80/1765)

Sequence randomization through functional phage display of single chain human interleukin (IL)-5 was used to investigate the limits of replaceability of the Glu(110) residues that form a part of the receptor-binding epitope. Mutational analysis revealed unexpected affinity for IL-5 receptor alpha chain with variants containing E110W or E110Y. Escherichia coli-expressed Glu(110) variants containing E110W in the otherwise sequence-intact N-terminal half, including a variant with an E110A replacement in the sequence-disabled C-terminal half, were shown by their CD spectra to be folded into secondary structures similar to that of single chain human IL-5 (scIL-5). Biosensor kinetics analysis revealed that (E110W/A5)scIL-5 and (E110W/A6)scIL-5 had receptor alpha chain binding affinities similar to that of (wt/A5)scIL-5. However, (E110W/A6)scIL-5 had a significantly reduced bioactivity in TF-1 cell proliferation compared with both (wt/A5)scIL-5 and (E110W/A5)scIL-5, and this activity reduction was disproportionately greater than the much smaller effect of Glu(110) mutation on receptor binding affinity. The marked and disproportionate decrease in TF-1 proliferation observed with (E110W/A6)scIL-5 suggests a role for Glu(110) in the biological activity mediated by the signal transducing receptor betac subunit of the IL-5 receptor. This is also consistent with the lack of stimulation of JAK2 phosphorylation by the (E110W/A6)scIL-5 mutant in recombinant 293T cells, as compared with the concentration-dependent stimulation seen for scIL-5. The results reveal the dispensability of charge in the Glu(110) locus of IL-5 for receptor alpha chain binding and, in contrast, its heretofore underappreciated importance for receptor activation.  (+info)