Involvement of JAK2 and MAPK on type II nitric oxide synthase expression in skin-derived dendritic cells. (65/1765)

In this report, we demonstrate that a fetal mouse skin-derived dendritic cell line produces nitric oxide (NO) in response to the endotoxin [lipopolysaccharide (LPS)] and to cytokines [tumor necrosis factor-alpha (TNF-alpha) and granulocyte-macrophage colony-stimulating factor (GM-CSF)]. Expression of the inducible isoform of NO synthase (iNOS) was confirmed by immunofluorescence with an antibody against iNOS. The tyrosine kinase inhibitor genistein decreased LPS- and GM-CSF-induced nitrite (NO(-2)) production. The effect of LPS and cytokines on NO(-2) production was inhibited by the Janus kinase 2 (JAK2) inhibitor tyrphostin B42. The p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB-203580 also reduced the NO(-2) production evoked by LPS, TNF-alpha, or GM-CSF, but it was not as effective as tyrphostin B42. Inhibition of MAPK kinase with PD-098059 also slightly reduced the effect of TNF-alpha or GM-CSF on NO(-2) production. Immunocytochemistry studies revealed that the transcription factor nuclear factor-kappaB was translocated from the cytoplasm into the nuclei of fetal skin-derived dendritic cells (FSDC) stimulated with LPS, and this translocation was inhibited by tyrphostin B42. Our results show that JAK2 plays a major role in the induction of iNOS in FSDC.  (+info)

Effects of complexation with in vivo enhancing monoclonal antibodies on activity of growth hormone in two responsive cell culture systems. (66/1765)

We describe the properties of three monoclonal antibodies (MAbs) to ovine GH, two of which have previously been shown to enhance, in vivo, the biological activity of bovine and ovine growth hormone. We have examined the effects of these MAbs on GH activity in two appropriate GH-responsive cell culture systems, investigating both acute signalling effects (Janus-activated kinase (Jak)-2 tyrosine phosphorylation -5 min) and longer-term (MTT-formazan production -24 h) effects of hormone-antibody complexes. In the 3T3-F442A pre-adipocyte cell line (which has been demonstrated to be GH responsive), we show that complexation of recombinant bovine (rb) GH with either of the two enhancing anti-ovine GH MAbs (OA11 and OA15) and the non-enhancing MAb, OA14, attenuates the ability of GH to stimulate tyrosine phosphorylation of Jak-2 at a 5-min time point. Using the mouse myeloid cell line, FDC-P1, stably transfected with the full-length ovine GH receptor (oGHR), we demonstrate that rbGH causes a dose-dependent increase in MTT-formazan production by these cells. Further, we demonstrate that OA11 and OA14, but not OA15, cause a decrease in this stimulatory activity of rbGH over a hormone concentration range of 5-50 ng/ml at both 24 and 48 h. We conclude that the different in vitro activities of the two in vivo enhancing MAbs are most probably related to the time-courses over which these two assays are performed, and also to the relative affinities between antibody, hormone and receptor. In addition, the in vitro inhibitory activity of the enhancing MAb OA11 in both short- and long-term bioassay lends further support to an exclusively in vivo model for MAb-mediated enhancement of GH action.  (+info)

Insulin selectively activates STAT5b, but not STAT5a, via a JAK2-independent signalling pathway in Kym-1 rhabdomyosarcoma cells. (67/1765)

The STAT multigene family of transcriptional regulators conveys signals from several cytokines and growth factors upon phosphorylation by janus kinases (JAK). Activation of STAT5 is typically mediated by JAK2, but more recent data indicate a direct activation by the insulin receptor kinase. STAT5 exists in two closely homologous isoforms, STAT5a and b. We here describe the selective tyrosine phosphorylation of STAT5b in Kym-1 cells in response to insulin. Blocking insulin signalling by HNMPA-(AM)(3), an insulin receptor kinase inhibitor, resulted in the loss of insulin-induced STAT5b tyrosine phosphorylation, whereas the inhibition of JAK2 by the JAK selective inhibitor tyrphostin AG490 had no effect. By contrast, in the same cells, IFNgamma-induced STAT5b activation was JAK2-dependent, indicating that this signal pathway is functional in Kym-1 cells. We conclude from this rhabdomyosarcoma model that STAT5b, but not STAT5a is a direct target of the insulin receptor kinase.  (+info)

Interleukin-4-induced transcriptional activation by stat6 involves multiple serine/threonine kinase pathways and serine phosphorylation of stat6. (68/1765)

Stat6 transcription factor is a critical mediator of IL-4-specific gene responses. Tyrosine phosphorylation is required for nuclear localization and DNA binding of Stat6. The authors investigated whether Stat6-dependent transcriptional responses are regulated through IL-4-induced serine/threonine phosphorylation. In Ramos B cells, the serine/threonine kinase inhibitor H7 inhibited IL-4-induced expression of CD23. Treatment with H7 did not affect IL-4R-mediated immediate signaling events such as tyrosine phosphorylation of Jak1, Jak3, insulin receptor substrate (IRS)-1 and IRS-2, or tyrosine phosphorylation and DNA binding of Stat6. To analyze whether the H7-sensitive pathway was regulating Stat6-activated transcription, we used reporter constructs containing different IL-4 responsive elements. H7 abrogated Stat6-, as well as Stat5-, mediated reporter gene activation and partially reduced C/EBP-dependent reporter activity. By contrast, IL-4-induced transcription was not affected by wortmannin, an inhibitor of the phosphatidyl-inositol 3'-kinase pathway. Phospho-amino acid analysis and tryptic phosphopeptide maps revealed that IL-4 induced phosphorylation of Stat6 on serine and tyrosine residues in Ramos cells and in 32D cells lacking endogenous IRS proteins. However, H7 treatment did not inhibit the phosphorylation of Stat6. Instead, H7 inhibited the IL-4-induced phosphorylation of RNA polymerase II. These results indicate that Stat6-induced transcription is dependent on phosphorylation events mediated by H7-sensitive kinase(s) but that it also involves serine phosphorylation of Stat6 by an H7-insensitive kinase independent of the IRS pathway. (Blood. 2000;95:494-502)  (+info)

Janus kinase 2-dependent activation of p38 mitogen-activated protein kinase by growth hormone. Resultant transcriptional activation of ATF-2 and CHOP, cytoskeletal re-organization and mitogenesis. (69/1765)

We demonstrate here that p38 mitogen-activated protein (MAP) kinase is activated in response to cellular stimulation by human GH (hGH) in Chinese hamster ovary cells stably transfected with GH receptor cDNA. This activation requires the proline-rich box 1 region of the GH receptor required for JAK2 association and is prevented by pretreatment of cells with the JAK2-specific inhibitor AG490. ATF-2 is both phosphorylated and transcriptionally activated by hGH, and its transcriptional activation also requires the proline-rich box 1 region of the GH receptor. Expression of wild type JAK2 can further enhance hGH-induced ATF-2-, CHOP-, and Elk-1-mediated transcriptional activation, whereas pretreatment with AG490 is inhibitory. Use of either specific pharmacological inhibitors or transient transfection of cells with p38alpha MAP kinase cDNA or a dominant negative variant demonstrated that hGH-stimulated transcriptional activation of ATF-2 and CHOP, but not Elk-1, is regulated by p38 MAP kinase. Both the p38 MAP kinase and p44/42 MAP kinase are critical for hGH-stimulated mitogenesis, whereas only p38 MAP kinase is required for hGH-induced actin cytoskeletal re-organization. p38 MAP kinase is therefore an important regulator in coordinating the pleiotropic effects of GH.  (+info)

Platelet-derived growth factor (PDGF)-induced activation of signal transducer and activator of transcription (Stat) 5 is mediated by PDGF beta-receptor and is not dependent on c-src, fyn, jak1 or jak2 kinases. (70/1765)

Several growth factors activate signal transducers and activators of transcription (Stats) but the mechanism of Stat activation in receptor tyrosine kinase signalling has remained elusive. In the present study we have analysed the roles of different platelet-derived growth factor (PDGF)-induced tyrosine kinases in the activation of Stat5. Co-expression experiments in insect and mammalian cells demonstrated that both PDGF beta-receptor (PDGF beta-R) and Jak1, but not c-Src, induced the activation of Stat5. Furthermore, immune-complex-purified PDGF beta-R was able to phosphorylate Stat5 directly. The role of the cytoplasmic tyrosine kinases in the PDGF-induced activation of Stat5 was further investigated by overexpressing kinase-negative (KN) and wild-type Jak and c-Src kinases. Jak1-KN or Jak2-KN had no effect but both Src-KN and wild-type c-Src similarly decreased the PDGF-beta-R-induced activation of Stat5. The activation of both Src and Stat5 is dependent on the same tyrosine residues Tyr(579) and Tyr(581) in PDGF beta-R; thus the observed inhibition by Src might result from competition for binding of Stat5 to the receptor. Finally, fibroblasts derived from Src(-/-) and Fyn(-/-) mice showed normal pattern of PDGF-induced tyrosine phosphorylation of Stat5. Taken together, these results indicate that Stat5 is a direct substrate for PDGF beta-R and that the activation does not require Jak1, Jak2, c-Src or Fyn tyrosine kinases.  (+info)

Modulation of major histocompatibility class II protein expression by varicella-zoster virus. (71/1765)

We sought to investigate the effects of varicella-zoster virus (VZV) infection on gamma interferon (IFN-gamma)-stimulated expression of cell surface major histocompatibility complex (MHC) class II molecules on human fibroblasts. IFN-gamma treatment induced cell surface MHC class II expression on 60 to 86% of uninfected cells, compared to 20 to 30% of cells which had been infected with VZV prior to the addition of IFN-gamma. In contrast, cells that were treated with IFN-gamma before VZV infection had profiles of MHC class II expression similar to those of uninfected cell populations. Neither IFN-gamma treatment nor VZV infection affected the expression of transferrin receptor (CD71). In situ and Northern blot hybridization of MHC II (MHC class II DR-alpha) RNA expression in response to IFN-gamma stimulation revealed that MHC class II DR-alpha mRNA accumulated in uninfected cells but not in cells infected with VZV. When skin biopsies of varicella lesions were analyzed by in situ hybridization, MHC class II transcripts were detected in areas around lesions but not in cells that were infected with VZV. VZV infection inhibited the expression of Stat 1alpha and Jak2 proteins but had little effect on Jak1. Analysis of regulatory events in the IFN-gamma signaling pathway showed that VZV infection inhibited transcription of interferon regulatory factor 1 and the MHC class II transactivator. This is the first report that VZV encodes an immunomodulatory function which directly interferes with the IFN-gamma signal transduction via the Jak/Stat pathway and enables the virus to inhibit IFN-gamma induction of cell surface MHC class II expression. This inhibition of MHC class II expression on VZV-infected cells in vivo may transiently protect cells from CD4(+) T-cell immune surveillance, facilitating local virus replication and transmission during the first few days of cutaneous lesion formation.  (+info)

Platelet-derived growth factor and lysophosphatidic acid inhibit growth hormone binding and signaling via a protein kinase C-dependent pathway. (72/1765)

Growth hormone (GH) regulates body growth and metabolism. GH exerts its biological action by stimulating JAK2, a GH receptor (GHR)-associated tyrosine kinase. Activated JAK2 phosphorylates itself and GHR, thus initiating multiple signaling pathways. In this work, we demonstrate that platelet-derived growth factor (PDGF) and lysophosphatidic acid (LPA) down-regulate GH signaling via a protein kinase C (PKC)-dependent pathway. PDGF substantially reduces tyrosyl phosphorylation of JAK2 induced by GH but not interferon-gamma or leukemia inhibitory factor. PDGF, but not epidermal growth factor, decreases tyrosyl phosphorylation of GHR (by approximately 90%) and the amount of both total cellular GHR (by approximately 80%) and GH binding (by approximately 70%). The inhibitory effect of PDGF on GH-induced tyrosyl phosphorylation of JAK2 and GHR is abolished by depletion of 4beta-phorbol 12-myristate 13-acetate (PMA)-sensitive PKCs with chronic PMA treatment and is severely inhibited by GF109203X, an inhibitor of PKCs. In contrast, extracellular signal-regulated kinases 1 and 2 and phosphatidylinositol 3-kinase appear not to be involved in this inhibitory effect of PDGF. LPA, a known activator of PKC, also inhibits GH-induced tyrosyl phosphorylation of JAK2 and GHR and reduces the number of GHR. We propose that ligands that activate PKC, including PDGF, LPA, and PMA, down-regulate GH signaling by decreasing the number of cell surface GHR through promoting GHR internalization and degradation and/or cleavage of membrane GHR and release of the extracellular domain of GHR.  (+info)