Rickettsia parkeri in Amblyomma triste from Uruguay. (17/199)

Our goal was to detect whether spotted fever group Rickettsia are found in the suspected vector of rickettsioses, Amblyomma triste, in Uruguay. Rickettsia parkeri was detected in A. triste, which suggests that this species could be considered a pathogenic agent responsible for human rickettsioses in Uruguay.  (+info)

Enzymatic characterization of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis. (18/199)

In the present study, we performed enzymatic characterization of Haemaphysalis longicornis serine proteinase (HlSP) with a view to shed light on the mechanisms of blood digestion in the hard ticks. Escherichia coli-expressed recombinant HlSP (rHlSP) was shown to potently hydrolyze the synthetic substrates Bz-(DL)-Arg-pNA, Z-Ala-Ala-Leu-pNA and Suc-Ala-Ala-Ala-pNA and yielded an activity of 31.5, 88.2 and 18.3 mumol/min/mg protein, respectively at an optimum temperature of 25 degrees C. However, the enzyme showed little activity to hydrolyze the substrates Suc-Arg-Pro-Phe-His-Leu-Leu-Val-Tyr-MCA and Pyr-Phe-Leu-pNA. The optimum pH for the enzyme was shown to be 4.0 to 5.0. Several inhibitors such as antipain, leupeptin and phenylmethylsulfonyl fluoride (PMSF), specific for serine proteinase were shown to inhibit enzyme activity by 20-82%, while E-64 (specific for cysteine proteinases) and pepstatinA (specific for aspartic proteinases) had shown only little inhibitory effects on it. This is the first report on enzymatic characterization of a functional serine proteinase from the hard ticks.  (+info)

Determination of an efficient and reliable method for DNA extraction from ticks. (19/199)

Molecular detection of pathogenic microorganisms in ticks is based on DNA amplification of the target pathogen; therefore, extraction of DNA from the tick is a major step. In this study, we compared three different tick DNA extraction protocols based on an enzymatic digestion by proteinase K followed by DNA extraction by a commercial kit (method 1), or on mortar crushing, proteinase K digestion and phenol/chloroform DNA extraction (method 2) and fine crushing with a beads beater, proteinase K digestion and DNA extraction using a commercial kit (method 3). The absence of PCR inhibitors and the DNA quality were evaluated by PCR amplification of the tick mitochondrial 16S rRNA gene using tick-specific primers. With method 1, 23/30 (77%) of the samples were extracted; with method 2, 30/31 (97%) of the samples were extracted and with method 3, 30/30 (100%) of the samples were extracted. DNA extraction efficiency using method 3 is significantly higher than DNA extraction efficiency using method 1 (100% versus 77%, P < 0.05). There was no significant difference between methods 2 and 3. Method 3 was however more adapted to cohort studies than method 2. This technique was validated for cohort tick DNA extraction and applicable to the treatment of small samples such as nymphs and soft ticks with 100% efficiency.  (+info)

Gene silencing of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis by RNA interference. (20/199)

RNA interference (RNAi) has been recently exploited to determine gene function by degrading specific mRNAs in several eukaryotic organisms. We constructed a double stranded RNA (dsRNA) from a previously cloned Haemaphysalis longicornis serine proteinase (HlSP) gene to test the importance of the function of the HlSP gene product during blood-feeding. Growth of unfed ticks treated with HlSP dsRNA was significantly inhibited compared to that of PBS-treated ticks. This inhibition was supported by the level of HlSP mRNA. HlSP may play a crucial role for blood-feeding in these ticks. This is the first report on gene silencing of a functional serine proteinase in hard ticks.  (+info)

Immunization effect of recombinant P27/30 protein expressed in Escherichia coli against the hard tick Haemaphysalis longicornis (Acari: Ixodidae) in rabbits. (21/199)

We investigated the induction of resistance to Haemaphysalis longicornis infestation in rabbits that had been immunized with recombinant H. longicornis P27/30 protein. The success of immunological control methods is dependent upon the use of potential key antigens as tick vaccine candidates. Previously, we cloned a gene encoding 27 kDa and 30 kDa proteins (P27/30) of H. longicornis, and identified P27/30 as a troponin I-like protein. In this study, rabbits that were immunized with recombinant P27/30 expressed in Escherichia coli showed the statistically significant longer feeding duration for larval and adult ticks (P<0.05), low engorgement rates in larval ticks (64.4%), and an apparent reduction in egg weights, which suggest that H. longicornis P27/30 protein is a potential candidate antigen for a tick vaccine. These results demonstrated that the recombinant P27/30 protein might be a useful vaccine candidate antigen for biological control of H. longicornis.  (+info)

Molecular differentiation of metastriate tick immatures. (22/199)

Hard ticks, family Ixodidae, are divided into two groups, the Metastriata and the Prostriata, based on morphological differences. In the United States, there are four medically important genera of the Ixodidae: Ixodes, Amblyomma, Dermacentor, and Rhipicephalus. Ixodes is the only genus in and representative of the Prostriata, whereas the latter three genera are members of the Metastriata. All developmental stages of the Prostriata can be easily differentiated from the Metastriata using morphology. Similarly, the three Metastriate genera are highly identifiable as adults, yet as immatures, the discriminating characteristics can be difficult to use for differentiation, especially if the specimens are damaged or engorged with blood. All three Metastriate genera represent medically important vectors, thus accurate differentiation is necessary. To this end, we have developed a multiplexed-PCR diagnostic assay that, when combined with RFLP analysis will differentiate between the Metastriate genera--Amblyomma, Dermacentor, Rhipicephalus, and Haemaphysalis based on the length of the PCR amplicon and subsequent restriction digestion profile. The intended use for this diagnostic is to verify morphological identifications, especially of immatures, as well as to identify samples destroyed for molecular analysis, which will lead to more accurate field data as well as implication of vectors in disease transmission.  (+info)

Immunization of mice with recombinant P27/30 protein confers protection against hard tick Haemaphysalis longicornis (Acari: Ixodidae) infestation. (23/199)

The success of immunological control methods is dependent upon the use of potential key antigens as tick vaccine candidates. Previously, we cloned a gene encoding 27 kDa and 30 kDa proteins (P27/30) of Haemaphysalis longicornis, and identified the P27/30 is a troponin I-like protein. In this study, the recombinant P27/30 (rP27/30) expressed in Escherichia coli was used to immunize mice and the mice were challenge-infested with ticks at different developmental stages of the same species. The rP27/30 protein stimulated a specific protective anti-tick immune response in mice, evidenced by the statistically significant longer pre-feeding periods in adult ticks. Furthermore, significantly longer feeding periods were noted in both larval and adult ticks. On the other hand, only larval ticks exhibited low attachment rates (31.1%). Immunization of mice with rP27/30 protein confers protection against hard tick Haemaphysalis longicornis infestation. These results demonstrated that the rP27/30 protein might be a useful vaccine candidate antigen for biological control of ticks.  (+info)

Transstadial and intrastadial experimental transmission of Ehrlichia canis by male Rhipicephalus sanguineus. (24/199)

The acquisition and transmission of rickettsial pathogens by different tick developmental stages has important epidemiological implications. The purpose of this study was to determine if male Rhipicephalus sanguineus can experimentally acquire and transmit Ehrlichia canis in the absence of female ticks. Two trials were performed where nymphal and male R. sanguineus were simultaneously acquisition fed on the same infected donor hosts, and transstadially or intrastadially exposed male ticks were fed on separate pathogen-free dogs as a test for transmission. A single-step p30-based PCR assay was used to test canine and tick hosts for E. canis infections before and after tick feeding. E. canis was detected after either intrastadial or transstadial passage in male ticks, the organism remained detectable in both tick groups after transmission feeding, and both tick groups transmitted the rickettsia to susceptible dogs. Infection of dogs via tick feeding resulted in milder clinical signs and lower antibody titers than intravenous inoculation of carrier blood, but further investigation is needed to understand the mechanisms responsible for this observation. These results demonstrate that male R. sanguineus can take multiple feedings, and that they can both acquire and transmit E. canis in the absence of female ticks. This tick development stage could be important in transmission of E. canis, and perhaps related pathogens, between vertebrate hosts under natural and experimental conditions.  (+info)