Mechanisms of inhibition of lipolysis by insulin, vanadate and peroxovanadate in rat adipocytes. (33/5295)

Vanadate and peroxovanadate (pV), potent inhibitors of tyrosine phosphatases, mimic several of the metabolic actions of insulin. Here we compare the mechanisms for the anti-lipolytic action of insulin, vanadate and pV in rat adipocytes. Vanadate (5 mM) and pV (0.01 mM) inhibited lipolysis induced by 0.01-1 microM isoprenaline, vanadate being more and pV less efficient than insulin (1 nM). A loss of anti-lipolytic effect of pV was observed by increasing the concentration of isoprenaline and/or pV. pV induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 to a greater extent than insulin, whereas vanadate affected these components little if at all. In addition, only a higher concentration (0.1 mM) of pV induced the tyrosine phosphorylation of p85, the 85 kDa regulatory subunit of phosphoinositide 3-kinase (PI-3K). Vanadate activated PI-3K-independent (in the presence of 10 nM isoprenaline) and PI-3K-dependent (in the presence of 100 nM isoprenaline) anti-lipolytic pathways, both of which were found to be independent of phosphodiesterase type 3B (PDE3B). pV (0.01 mM), like insulin, activated PI-3K- and PDE3B-dependent pathways. However, the anti-lipolytic pathway of 0.1 mM pV did not seem to require insulin receptor substrate-1-associated PI-3K and was found to be partly independent of PDE3B. Vanadate and pV (only at 0.01 mM), like insulin, decreased the isoprenaline-induced activation of cAMP-dependent protein kinase. Overall, these results underline the complexity and the diversity in the mechanisms that regulate lipolysis.  (+info)

Effect of gemfibrozil in vitro on fat-mobilizing lipolysis in human adipose tissue. (34/5295)

Fat-mobilizing lipolysis was studied in rat and human adipose tissue during incubation in vitro by following the release of glycerol into the incubation medium. Gemfibrozil as well as clofibrate consistently and readily inhibited basal as well as noradrenaline-stimulated fat-mobilizing lipolysis in rat fat. With human adipose tissue no effect was observed with gemfibrozil and clofibrate on basal lipolysis. This may be due to the comparatively low rate of the nonstimulated fat-mobilizing lipolysis in human tissue incubated in vitro. When lipolysis was stimulated with noradrenaline as well as isoprenaline, however, both gemfibrozil and clofibrate significantly reduced the fat-mobilizing lipolysis. This inhibition of lipolysis was however not observed in all studies. When lipolysis had been stimulated with theophylline, no inhibition of lipolysis was obtained with either compound. The possibility that reduced fat-mobilizing lipolysis in adipose tissue may cause a lowering of plasma triglycerides by reducing the flow of FFA to the liver is discussed in some detail. It is also suggested that inhibition of lipolysis may be accompanied by increased activity of lipoprotein lipase as well as an increase in the FIAT process. However, the pharmacological implication of the above-mentioned findings, particularly for gemfibrozil, must await further studies, as fairly large doses, around 1 mg/ml of incubation medium, were needed to obtain inhibition of fat-mobilizing lipolysis.  (+info)

Regulation of TH1- and TH2-type cytokine expression and action in atopic asthmatic sensitized airway smooth muscle. (35/5295)

CD4(+) T helper (TH)1- and TH2-type cytokines reportedly play an important role in the pathobiology of asthma. Recent evidence suggests that proasthmatic changes in airway smooth muscle (ASM) responsiveness may be induced by the autocrine release of certain proinflammatory cytokines by the ASM itself. We examined whether TH1- and TH2-type cytokines are expressed by atopic asthmatic sensitized ASM and serve to autologously regulate the proasthmatic phenotype in the sensitized ASM. Expression of these cytokines and their receptors was examined in isolated rabbit and human ASM tissues and cultured cells passively sensitized with sera from atopic asthmatic patients or control subjects. Relative to controls, atopic sensitized ASM cells exhibited an early increased mRNA expression of the TH2-type cytokines, interleukin-5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF), and their receptors. This was later followed by enhanced mRNA expression of the TH1-type cytokines, IL-2, IL-12, and interferon-gamma (IFN-gamma), as well as their respective receptors. In experiments on isolated ASM tissue segments (a) exogenous administration of IL-2 and IFN-gamma to atopic asthmatic serum-sensitized ASM ablated both their enhanced constrictor responsiveness to acetylcholine (ACh) and their attenuated relaxation responsiveness to beta-adrenoceptor stimulation with isoproterenol, and (b) administration of IL-5 and GM-CSF to naive ASM induced significant increases in their contractility to ACh and impaired their relaxant responsiveness to isoproterenol. Collectively, these observations provide new evidence demonstrating that human ASM endogenously expresses both TH1- and TH2-type cytokines and their receptors, that these molecules are sequentially upregulated in the atopic asthmatic sensitized state, and that they act to downregulate and upregulate proasthmatic perturbations in ASM responsiveness, respectively.  (+info)

Differential regulation of inotropy and lusitropy in overexpressed Gsalpha myocytes through cAMP and Ca2+ channel pathways. (36/5295)

We investigated the mechanisms responsible for altered contractile and relaxation function in overexpressed Gsalpha myocytes. Although baseline contractile function (percent contraction) in Gsalpha mice was similar to that of wild-type (WT) mice, left ventricular myocyte contraction, fura-2 Ca2+transients, and Ca2+ channel currents (ICa) were greater in Gsalpha mice in response to 10(-8) M isoproterenol (ISO) compared with WT mice. The late phase of relaxation of the isolated myocytes and fura-2 Ca2+ transients was accelerated at baseline in Gsalpha but did not increase further with ISO. In vivo measurements using echocardiography also demonstrated enhanced relaxation at baseline in Gsalpha mice. Forskolin and CaCl2 increased contraction similarly in WT and Gsalpha mice. Rp-cAMP, an inhibitor of protein kinase, blocked the increases in contractile response and Ca2+ currents to ISO in WT and to forskolin in both WT and Gsalpha. It also blocked the accelerated relaxation in Gsalpha at baseline but not the contractile response to ISO in Gsalpha myocytes. Baseline measurements of cAMP and phospholambation phosphorylation were enhanced in Gsalpha compared with WT. These data indicate that overexpression of Gsalpha accelerates relaxation at end diastolic but does not affect baseline systolic function in isolated myocytes. However, the enhanced responses to sympathetic stimulation partly reflect increased Ca2+ channel activity; i.e the cellular mechanisms mediating these effects appear to involve a cAMP-independent as well as a cAMP-dependent pathway.  (+info)

Influence of right atrial pressure on the cardiac pacemaker response to vagal stimulation. (37/5295)

We have recently shown that the intrinsic rate response to an increase in right atrial pressure is augmented when cardiac muscarinic receptors are activated. This present study examines the cardiac pacemaker response to vagal stimulation at different values of right atrial pressure in isolated rat right atrium and in the rabbit heart in situ. In the rat atrium, when pressure was raised in steps from 2 to 10 mmHg, there was a progressive reduction in the response to vagal stimulation [40.5 +/- 7.2% reduction (mean +/- SE) at 8 mmHg, P < 0.01], which was independent of the level of vagal bradycardia, that persisted in the presence of the beta-adrenergic agonist isoproterenol. In barbiturate-anesthetized rabbits with cervical vagi cut and beta-adrenergic blockade, raising right atrial pressure approximately 2.5 mmHg by blood volume expansion reduced the bradycardia elicited by electrical stimulation of the peripheral end of the right vagus nerve (9.1 +/- 1.1% reduction, P < 0.0001). These results demonstrate that vagal bradycardia is modulated by the level of right atrial pressure and suggest that normally right atrial pressure may interact with cardiac vagal activity in the control of heart rate.  (+info)

Phospholamban deficiency does not compromise exercise capacity. (38/5295)

Deficiency of phospholamban (PLB) results in enhancement of basal murine cardiac function and an attenuated response to beta-adrenergic stimulation. To determine whether the absence of PLB also reduces the reserve capacity of the murine cardiovascular system to respond to stress, we evaluated the heart rate (HR), blood pressure, and metabolic responses of PLB-deficient (PLB-/-) mice to graded treadmill exercise (GTE). PLB-/- mice were hypertensive at rest (125 +/- 19 vs. 109 +/- 16 mmHg, P < 0.05) but had normal tachycardic and hypotensive responses to isoproterenol. The HR response to GTE was normal; however, the hypertension in PLB-/- mice normalized at peak exercise. Their exercise capacities, as measured by duration of exercise and peak oxygen consumption (VO2), were normal. The oxygen pulse (VO2/HR) curve was also normal in PLB-/- mice, suggesting an ability to appropriately increase stroke volume and oxygen extraction during GTE, despite an inability to increase beta-adrenergically stimulated cardiac contractility. Thus deficiency of PLB, although resulting in diminished beta-adrenergic inotropic reserve, does not compromise cardiac performance during exercise.  (+info)

Sympathovagal balance: how should we measure it? (39/5295)

There are complex interactions between the sympathetic and parasympathetic nervous system inputs to the sinus node. The concept of "sympathovagal balance" reflects the autonomic state resulting from the sympathetic and parasympathetic influences. Despite widespread usage of a variety of heart rate (HR) variability parameters as indexes of sympathovagal balance, no index has been validated as a measure of sympathovagal balance. This study evaluated the utility of HR, HR variability, and a new parameter termed the vagal-sympathetic effect (VSE) as indexes of sympathovagal balance. The ideal parameter had to satisfy the following criteria: 1) the index should vary similarly among subjects in response to different autonomic conditions; 2) the variability in the index among subjects exposed to the same autonomic conditions should be small; and 3) the response of the index to various autonomic conditions should reflect the underlying changes in physiological state and have a meaningful interpretation. Volunteers [8 men, 6 women; mean age 28.5 +/- 4.8 (SD) yr] were evaluated for the effects of sympathetic and parasympathetic stimulation and blockade on HR and HR variability. VSE was defined as the ratio of the R-R interval to the intrinsic R-R interval. VSE and R-R interval consistently changed in the expected directions with parasympathetic and sympathetic stimulation and blockade. A general linearized model was used to evaluate the response of each parameter. VSE and R-R interval had r2 values of 0.847 and 0.852, respectively. Natural logarithm of the low-frequency power had an r2 value of 0.781 with lower r2 values for all the other HR variability parameters. The coefficient of variation was also lowest for each condition tested for the VSE and the R-R interval. VSE and R-R interval best satisfy the criteria for the ideal index of sympathovagal balance. Because it is impractical under most conditions to measure the VSE as the index of sympathovagal balance, the most suitable index is the R-R interval.  (+info)

Impaired force-frequency relations in patients with hypertensive left ventricular hypertrophy. A possible physiological marker of the transition from physiological to pathological hypertrophy. (40/5295)

BACKGROUND: The extent to which force-frequency and relaxation-frequency relations (FFR and RFR, respectively) and exercise-induced adrenergic stimulation affect myocardial inotropic and lusitropic reserves has not been established in patients with left ventricular (LV) hypertrophy (LVH). METHODS AND RESULTS: We calculated the maximum first derivative of LV pressure (LV dP/dtmax) and the LV pressure half-time (T1/2) during pacing, exercise, and isoproterenol infusion in 17 patients with hypertensive LVH and 9 control subjects to investigate the influence of increases in heart rate (HR) and adrenergic stimulation on inotropic and lusitropic reserves. Group A consisted of 10 LVH patients who showed a progressive increase in the HR-LV dP/dtmax relation. Group B consisted of 7 LVH patients in whom the HR-dP/dtmax relation at physiological pacing rates was biphasic. The LV mass index was larger and the LV ejection fraction was smaller in group B than in group A (244+/-72 g/m2 versus 172+/-22 g/m2 and 55+/-18% versus 72+/-6%, respectively; both P<0.05). The increase in LV dP/dtmax was greater during exercise than pacing alone for similar increases in HR in all groups (P<0.05) (group A, 111+/-22% versus 25+/-14%; group B, 105+/-35% versus 14+/-10%; control, 111+/-24% versus 25+/-12%). T1/2 was shorter (P<0.05) during exercise than with pacing alone in all groups (group A, 41+/-6% versus 11+/-3%; group B, 38+/-9% versus 14+/-4%; control, 44+/-6% versus 12+/-5%). Isoproterenol infusion caused similar increases in LV dP/dtmax and similar decreases in T1/2 in all groups. CONCLUSIONS: The FFR was biphasic in patients with severe LVH irrespective of LV function but was preserved in patients with less severe LVH and control subjects. Importantly, the RFR and adrenergic control of both inotropic and lusitropic reserves were well preserved in all LVH patients. A biphasic FFR at physiological pacing rates may be one of the earliest markers of the transition from physiological adaptation to the pathological process in LVH patients.  (+info)