Digestibility of the hydrogenated derivative of an isomaltooligosaccharide mixture by rats. (1/68)

The digestibility of the hydrogenated derivative of an isomaltooligosaccharide mixture (IMO-H) was investigated. In an in vitro experiment, the digestibility of IMO-H was examined by models of the digestive system. IMO-H was resistant to two types of alpha-amylase and to artificial gastric juice. Enzymes in the rat small intestinal mucosa hydrolyzed tri-, tetra- and higher saccharide alcohols to disaccharide alcohol, removing successive glucose units from the non-reducing ends of the chains. The hydrolysis ratio for IMO-H was intermediate between the values for maltose and maltitol. In an in vivo study, growing rats were fed on an experimental diet containing IMO-H, maltitol, or hydrogenated palatinose in the range from 5% to 20%. The growth parameters of the rats fed on the test sugar show that the availability of IMO-H was about 1.2 to 1.25 times that of maltitol or hydrogenated palatinose.  (+info)

Cloning and characterization of the gene cluster for palatinose metabolism from the phytopathogenic bacterium Erwinia rhapontici. (2/68)

Erwinia rhapontici is able to convert sucrose into isomaltulose (palatinose, 6-O-alpha-D-glucopyranosyl-D-fructose) and trehalulose (1-O-alpha-D-glucopyranosyl-D-fructose) by the activity of a sucrose isomerase. These sucrose isomers cannot be metabolized by plant cells and most other organisms and therefore are possibly advantageous for the pathogen. This view is supported by the observation that in vitro yeast invertase activity can be inhibited by palatinose, thus preventing sucrose consumption. Due to the lack of genetic information, the role of sucrose isomers in pathogenicity has not been evaluated. Here we describe for the first time the cloning and characterization of the palatinose (pal) genes from Erwinia rhapontici. To this end, a 15-kb chromosomal DNA fragment containing nine complete open reading frames (ORFs) was cloned. The pal gene products of Erwinia rhapontici were shown to be homologous to proteins involved in uptake and metabolism of various sugars from other microorganisms. The palE, palF, palG, palH, palK, palQ, and palZ genes were oriented divergently with respect to the palR and palI genes, and sequence analysis suggested that the first set of genes constitutes an operon. Northern blot analysis of RNA extracted from bacteria grown under various conditions implies that the expression of the palI gene and the palEFGHKQZ genes is oppositely regulated at the transcriptional level. Genes involved in palatinose uptake and metabolism are down regulated by sucrose and activated by palatinose. Palatinose activation is inhibited by sucrose. Functional expression of palI and palQ in Escherichia coli revealed sucrose isomerase and palatinase activity, respectively.  (+info)

Responses of the ant Lasius niger to various compounds perceived as sweet in humans: a structure-activity relationship study. (3/68)

A behavioural study on the ant Lasius niger was performed by observing its feeding responses to 85 compounds presented in a two-choice situation (tested compound versus water control or sucrose solution). Among these compounds, only 21 were phagostimulating: six monosaccharides (D-glucose, 6-deoxy-D-glucose, L-galactose, L-fucose, D-fructose, L-sorbose), four derivatives of D-glucose (methyl alpha-D-glucoside, D-gluconolactone and 6-chloro- and 6-fluoro-deoxy-D-glucose), five disaccharides (sucrose, maltose, palatinose, turanose and isomaltose), one polyol glycoside (maltitol), three trisaccharides (melezitose, raffinose and maltotriose) and two polyols (sorbitol and L-iditol). None of the 16 non-carbohydrate non-polyol compounds tested, although perceived as sweet in humans, was found to be active in ants. The molar order of effectiveness of the major naturally occuring compounds (melezitose > sucrose = raffinose > D-glucose > D-fructose = maltose = sorbitol) is basically different from the molar order of their sweetness potency in humans (sucrose > D-fructose > melezitose > maltose > D-glucose = raffinose = sorbitol). On a molar basis melezitose is in L. niger about twice as effective as sucrose or raffinose, while D-glucose and D-fructose are three and four times less effective, respectively, than sucrose or raffinose. From a structure-activity relationship study it was inferred that the active monosaccharides and polyols should interact with the ant receptor through only one type of receptor, through the same binding pocket and the same binding residues, via a six-point interaction. The high effectiveness of melezitose in L. niger mirrors the feeding habits of these ants, which attend homopterans and are heavy feeders on their honeydew, which is very rich in this carbohydrate.  (+info)

The sucrose analog palatinose leads to a stimulation of sucrose degradation and starch synthesis when supplied to discs of growing potato tubers. (4/68)

In the present paper we investigated the effect of the sucrose (Suc) analog palatinose on potato (Solanum tuberosum) tuber metabolism. In freshly cut discs of growing potato tubers, addition of 5 mM palatinose altered the metabolism of exogenously supplied [U-14C]Suc. There was slight inhibition of the rate of 14C-Suc uptake, a 1.5-fold increase in the rate at which 14C-Suc was subsequently metabolized, and a shift in the allocation of the metabolized label in favor of starch synthesis. The sum result of these changes was a 2-fold increase in the absolute rate of starch synthesis. The increased rate of starch synthesis was accompanied by a 3-fold increase in inorganic pyrophosphate, a 2-fold increase in UDP, decreased UTP/UDP, ATP/ADP, and ATP/AMP ratios, and decreased adenylate energy charge, whereas glycolytic and Krebs cycle intermediates were unchanged. In addition, feeding palatinose to potato discs also stimulated the metabolism of exogenous 14C-glucose in favor of starch synthesis. In vitro studies revealed that palatinose is not metabolized by Suc synthases or invertases within potato tuber extracts. Enzyme kinetics revealed different effects of palatinose on Suc synthase and invertase activities, implicating palatinose as an allosteric effector leading to an inhibition of Suc synthase and (surprisingly) to an activation of invertase in vitro. However, measurement of tissue palatinose levels revealed that these were too low to have significant effects on Suc degrading activities in vivo. These results suggest that supplying palatinose to potato tubers represents a novel way to increase starch synthesis.  (+info)

Effects of alpha-D-glucosylglycerol on the in vitro digestion of disaccharides by rat intestinal enzymes. (5/68)

Alpha-D-glucosylglycerol (GG) is a mixture of 2-O-alpha-D-glucosylglycerol (GG-II), (2R)-1-O-alpha-D-glucosylglycerol (R-GG-I) and (2S)-1-O-alpha-D-glucosylglycerol (S-GG-I). GG has been found to be slightly hydrolyzed in vitro only by rat intestinal enzymes, but hardly at all by other digestive juices. GG suppressed the hydrolysis of maltose, sucrose and isomaltose by rat intestinal enzymes because the amount of glucose in the digestion of a mixture of GG and disaccharide was less than the sum of that in each individual digestion. The consumption of GG was suppressed by isomaltose, but promoted by maltose, with the hydrolysis of GG being suppressed. Sucrose appeared to suppress only the consumption of S-GG-I, suggesting that S-GG-I was hydrolyzed by the active site of sucrase in a sucrase-isomaltase complex. Transglucosylation seems to have occurred more frequently in the individual digestion of maltose and isomaltose than in that of GG and sucrose. GG seemed to promote transglucosylation in the presence of maltose, to suppress it with sucrose, and to delay it with isomaltose.  (+info)

Novel alpha-glucosidase from Aspergillus nidulans with strong transglycosylation activity. (6/68)

Aspergillus nidulans possessed an alpha-glucosidase with strong transglycosylation activity. The enzyme, designated alpha-glucosidase B (AgdB), was purified and characterized. AgdB was a heterodimeric protein comprising 74- and 55-kDa subunits and catalyzed hydrolysis of maltose along with formation of isomaltose and panose. Approximately 50% of maltose was converted to isomaltose, panose, and other minor transglycosylation products by AgdB, even at low maltose concentrations. The agdB gene was cloned and sequenced. The gene comprised 3,055 bp, interrupted by three short introns, and encoded a polypeptide of 955 amino acids. The deduced amino acid sequence contained the chemically determined N-terminal and internal amino acid sequences of the 74- and 55-kDa subunits. This implies that AgdB is synthesized as a single polypeptide precursor. AgdB showed low but overall sequence homology to alpha-glucosidases of glycosyl hydrolase family 31. However, AgdB was phylogenetically distinct from any other alpha-glucosidases. We propose here that AgdB is a novel alpha-glucosidase with unusually strong transglycosylation activity.  (+info)

Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. (7/68)

To gain insight into the regulatory mechanisms of sugar signaling in plants, the effect of derivatives of the transport sugar sucrose (Suc), the Suc isomers palatinose and turanose, and the Suc analog fluoro-Suc were tested. Photo-autotrophic suspension culture cells of tomato (Lycopersicon peruvianum) were used to study their effect on the regulation of marker genes of source and sink metabolism, photosynthesis, and the activation of mitogen-activated protein kinases (MAPKs). Suc and glucose (Glc) resulted in reverse regulation of source and sink metabolism. Whereas the mRNA level of extracellular invertase (Lin6) was induced, the transcript level of small subunit of ribulose bisphosphate carboxylase (RbcS) was repressed. In contrast, turanose, palatinose, and fluoro-Suc only rapidly induced Lin6 mRNA level, whereas the transcript level of RbcS was not affected. The differential effect of the metabolizable and non-metabolizable sugars on RbcS mRNA regulation was reflected by the fact that only Suc and Glc inhibited photosynthesis and chlorophyll fluorescence. The activation of different signal transduction pathways by sugars was further supported by the analysis of the activation of MAPKs. MAPK activity was found to be strongly activated by turanose, palatinose, and fluoro-Suc, but not by Suc and Glc. To analyze the role of sugars in relation to pathogen perception, an elicitor preparation of Fusarium oxysporum lycopersici was used. The strong activation of MAPKs and the fast and transient induction of Lin6 expresssion by the fungal elicitor resembles the effect of turanose, palatinose, and fluoro-Suc and indicates that non-metabolizable sugars are sensed as stress-related stimuli.  (+info)

Isomaltulose synthase from Klebsiella sp. strain LX3: gene cloning and characterization and engineering of thermostability. (8/68)

The gene (palI) encoding isomaltulose synthase (PalI) from a soil bacterial isolate, Klebsiella sp. strain LX3, was cloned and characterized. PalI converts sucrose into isomaltulose, trehalulose, and trace amounts of glucose and fructose. Sequence domain analysis showed that PalI contains an alpha-amylase domain and (beta/alpha)(8)-barrel structures, suggesting that it belongs to the alpha-amylase family. Sequence alignment indicated that the five amino acid residues of catalytic importance in alpha-amylases and glucosyltransferases (Asp(241), Glu(295), Asp(369), His(145), and His(368)) are conserved in PalI. Purified recombinant PalI displayed high catalytic efficiency, with a Km of 54.6 +/- 1.7 mM for sucrose, and maximum activity (approximately 328.0 +/- 2.5 U/mg) at pH 6.0 and 35 degrees C. PalI activity was strongly inhibited by Fe3+ and Hg2+ and was enhanced by Mn2+ and Mg2+. The half-life of PalI was 1.8 min at 50 degrees C. Replacement of selected amino acid residues by proline significantly increased the thermostability of PalI. Simultaneous replacement of Glu(498) and Arg(310) with proline resulted in an 11-fold increase in the half-life of PalI at 50 degrees C.  (+info)