Donor site competition is involved in the regulation of alternative splicing of the rat beta-tropomyosin pre-mRNA. (9/9869)

The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  (+info)

Photocrosslinking of 4-thio uracil-containing RNAs supports a side-by-side arrangement of domains 5 and 6 of a group II intron. (10/9869)

Previous studies suggested that domains 5 and 6 (D5 and D6) of group II introns act together in splicing and that the two helical structures probably do not interact by helix stacking. Here, we characterized the major Mg2+ ion- and salt-dependent, long-wave UV light-induced, intramolecular crosslinks formed in 4-thiouridine-containing D56 RNA from intron 5gamma (aI5gamma) of the COXI gene of yeast mtDNA. Four major crosslinks were mapped and found to result from covalent bonds between nucleotides separating D5 from D6 [called J(56)] and residues of D6 near and including the branch nucleotide. These findings are extended by results of similar experiments using 4-thioU containing D56 RNAs from a mutant allele of aI5gamma and from the group IIA intron, aI1. Trans-splicing experiments show that the crosslinked wild-type aI5gamma D56 RNAs are active for both splicing reactions, including some first-step branching. An RNA containing the 3-nt J(56) sequence and D6 of aI5gamma yields one main crosslink that is identical to the most minor of the crosslinks obtained with D56 RNA, but in this case in a cation-independent fashion. We conclude that the interaction between J(56) and D6 is influenced by charge repulsion between the D5 and D6 helix backbones and that high concentrations of cations allow the helices to approach closely under self-splicing conditions. The interaction between J(56) and D6 appears to be a significant factor establishing a side-by-side (i.e., not stacked) orientation of the helices of the two domains.  (+info)

Association of polymorphism at the type I collagen (COL1A1) locus with reduced bone mineral density, increased fracture risk, and increased collagen turnover. (11/9869)

OBJECTIVE: To examine the relationship between a common polymorphism within intron 1 of the COL1A1 gene and osteoporosis in a nested case-control study. METHODS: We studied 185 healthy women (mean +/- SD age 54.3+/-4.6 years). Bone mineral density (BMD) was measured using dual x-ray absorptiometry, and fractures were determined radiographically. The COL1A1 genotype was assessed using the polymerase chain reaction and Bal I endonuclease digestion. RESULTS: Genotype frequencies were similar to those previously observed and in Hardy-Weinberg equilibrium: SS 61.1%, Ss 36.2%, and ss 2.7%. Carriage of at least one copy of the "s" allele was associated with a significant reduction in lumbar spine BMD (P = 0.02) and an increased risk of total fracture (P = 0.04). Urinary pyridinoline levels were significantly elevated in those with the risk allele (P < 0.05). CONCLUSION: These data support the findings that the COL1A1 gene polymorphism is associated with low BMD and fracture risk, and suggest a possible physiologic effect on total body turnover of type I collagen.  (+info)

Three receptor genes for plasminogen related growth factors in the genome of the puffer fish Fugu rubripes. (12/9869)

Plasminogen related growth factors (PRGFs) and their receptors play major roles in embryogenesis, tissue regeneration and neoplasia. In order to investigate the complexity and evolution of the PRGF receptor family we have cloned and sequenced three receptors for PRGFs in the teleost fish Fugu rubripes, a model vertebrate with a compact genome. One of the receptor genes isolated encodes the orthologue of mammalian MET, whilst the other two may represent Fugu rubripes orthologues of RON and SEA. This is the first time three PRGF receptors have been identified in a single species.  (+info)

Fibroblast growth factor-8 expression is regulated by intronic engrailed and Pbx1-binding sites. (13/9869)

Fibroblast growth factor-8 (FGF8) plays a critical role in vertebrate development and is expressed normally in temporally and spatially restricted regions of the vertebrate embryo. We now report on the identification of regions of Fgf8 important for its transcriptional regulation in murine ES cell-derived embryoid bodies. Stable transfection of ES cells, using a human growth hormone reporter gene, was employed to identify regions of the Fgf8 gene with promoter/enhancer activity. A 2-kilobase 5' region of Fgf8 was shown to contain promoter activity. A 0.8-kilobase fragment derived from the large intron of Fgf8 was found to enhance human growth hormone expressed from the Fgf8 promoter 3-4-fold in an orientation dependent manner. The intronic fragment contains DNA-binding sites for the AP2, Pbx1, and Engrailed transcription factors. Gel shift and Western blot experiments documented the presence of these transcription factors in nuclear extracts from ES cell embryoid bodies. In vitro mutagenesis of the Engrailed or Pbx1 site demonstrated that these sites modulate the activity of the intronic fragment. In addition, in vitro mutagenesis of both Engrailed and Pbx1 sites indicated that other unidentified sites are responsible for the transcriptional enhancement observed with the intronic fragment.  (+info)

Comparison of Bombyx mori and Helicoverpa armigera cytoplasmic actin genes provides clues to the evolution of actin genes in insects. (14/9869)

The cytoplasmic actin genes BmA3 and BmA4 of Bombyx mori were found clustered in a single genomic clone in the same orientation. As a similar clustering of the two cytoplasmic actin genes Ha3a and Ha3b also occurs in another lepidopteran, Helicoverpa armigera, we analyzed the sequence of the pair of genes from each species. Due to the high conservation of cytoplasmic actins, the coding sequence of the four genes was easily aligned, allowing the detection of similarities in noncoding exon and intron sequences as well as in flanking sequences. All four genes exhibited a conserved intron inserted in codon 117, an original position not encountered in other species. It can thus be postulated that all of these genes derived from a common ancestral gene carrying this intron after a single event of insertion. The comparison of the four genes revealed that the genes of B. mori and H. armigera are related in two different ways: the coding sequence and the intron that interrupts it are more similar between paralogous genes within each species than between orthologous genes of the two species. In contrast, the other (noncoding) regions exhibited the greatest similarity between a gene of one species and a gene of the other species, defining two pairs of orthologous genes, BmA3 and HaA3a on one hand and BmA4 and HaA3b on the other. However, in each species, the very high similarities of the coding sequence and of the single intron that interrupts it strongly suggest that gene conversion events have homogenized this part of the sequence. As the divergence of the B. mori genes was higher than that of the H. armigera genes, we postulated that the gene conversion occurred earlier in the B. mori lineage. This leads us to hypothesize that gene conversion could also be responsible for the original transfer of the common intron to the second gene copy before the divergence of the B. mori and H. armigera lineages.  (+info)

Complete exon-intron organization of the mouse fibulin-1 gene and its comparison with the human fibulin-1 gene. (15/9869)

Fibulin-1 is a 90 kDa calcium-binding protein present in the extracellular matrix and in the blood. Two major variants, C and D, differ in their C-termini as well as the ability to bind the basement membrane protein nidogen. Here we characterized genomic clones encoding the mouse fibulin-1 gene, which contains 18 exons spanning at least 75 kb of DNA. The two variants are generated by alternative splicing of exons in the 3' end. By searching the database we identified most of the exons encoding the human fibulin-1 gene and showed that its exon-intron organization is similar to that of the mouse gene.  (+info)

A previously undescribed intron and extensive 5' upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. (16/9869)

The synaptic action of norepinephrine is terminated by NaCl-dependent uptake into presynaptic noradrenergic nerve endings, mediated by the norepinephrine transporter (NET). NET is expressed only in neuronal tissues that synthesize and secrete norepinephrine and in most cases is co-expressed with the norepinephrine-synthetic enzyme dopamine beta-hydroxylase (DBH). To understand the molecular mechanisms regulating human NET (hNET) gene expression, we isolated and characterized an hNET genomic clone encompassing approximately 9. 5 kilobase pairs of the 5' upstream promoter region. Here we demonstrate that the hNET gene contains an as-yet-unidentified intron of 476 base pairs within the 5'-untranslated region. Furthermore, both primer extension and 5'-rapid amplification of cDNA ends analyses identified multiple transcription start sites from mRNAs expressed only in NET-expressing cell lines. The start sites clustered in two subdomains, each preceded by a TATA-like sequence motif. As expected for mature mRNAs, transcripts from most of these sites each contained an additional G residue at the 5' position. Together, the data strongly support the authenticity of these sites as the transcriptional start sites of hNET. We assembled hNET-chloramphenicol acetyltransferase reporter constructs containing different lengths of hNET 5' sequence in the presence or the absence of the first intron. Transient transfection assays indicated that the combination of the 5' upstream sequence and the first intron supported the highest level of noradrenergic cell-specific transcription. Forced expression of the paired-like homeodomain transcription factor Phox2a did not affect hNET promoter activity in NET-negative cell lines, in marked contrast to its effect on a DBH-chloramphenicol acetyltransferase reporter construct. Together with our previous studies suggesting a critical role of Phox2a for noradrenergic-specific expression of the DBH gene, these data support a model in which distinct, or partially distinct, molecular mechanisms regulate cell-specific expression of the NET and DBH genes.  (+info)