The intrinsic factor-vitamin B12 receptor, cubilin, is assembled into trimers via a coiled-coil alpha-helix. (1/157)

A large protein was purified from bovine kidney, using selective extraction with EDTA to solubilize proteins anchored by divalent cation-dependent interactions. An antiserum raised against the purified protein labeled the apical cell surface of the epithelial cells in proximal tubules and the luminal surface of small intestine. Ten peptide sequences, derived from the protein, all matched the recently published sequences for rat (Moestrup, S. K., Kozyraki, R., Kristiansen, M., Kaysen, J. H., Holm Rasmussen, H., Brault, D., Pontillon, F., Goda, F. O., Christensen, E. I., Hammond, T. G., and Verroust, P. J. (1998) J. Biol. Chem. 273, 5235-5242) and human cubilin, a receptor for intrinsic factor-vitamin B12 complexes, identifying the protein as bovine cubilin. In electron microscopy, a three-armed structure was seen, indicating an oligomerization of three identical subunits. This model was supported by the Mr values of about 1,500,000 for the intact protein and 440,000 for its subunits obtained by analytical ultracentrifugation. In a search for a potential assembly domain, we identified a region of heptad repeats in the N-terminal part of the cubilin sequence. Computer-assisted analysis supported the presence of a coiled-coil alpha-helix between amino acids 103 and 132 of the human cubilin sequence and predicted the formation of a triple coiled-coil. We therefore conclude that cubilin forms a noncovalent trimer of identical subunits connected by an N-terminal coiled-coil alpha-helix.  (+info)

Molecular dissection of the intrinsic factor-vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding. (2/157)

Cubilin, the receptor for intrinsic factor-vitamin B12, is a novel type of high molecular weight receptor consisting of a 27 CUB (complement components C1r/C1s, Uegf, and bone morphogenic protein-1) domain cluster preceded by 8 epidermal growth factor repeats and a short N-terminal sequence. In addition to binding the vitamin B12-carrier complex, cubilin also binds receptor-associated protein. To delineate the structures for membrane association and ligand binding we established a panel of stable transfected Chinese hamster ovary cells expressing overlapping segments of rat cubilin. Analysis of conditioned media and cell extracts of transfected cells revealed that the N-terminal cubilin region conveys membrane association. Helical plotting of this region demonstrated a conserved amphipathic helix pattern (Lys74-Glu109) as a candidate site for hydrophobic interactions. Ligand affinity chromatography and surface plasmon resonance analysis of the secreted cubilin fragments showed ligand binding in the CUB domain region. Further dissection of binding-active fragments localized the binding site for intrinsic factor-vitamin B12 to CUB domains 5-8 and a receptor-associated protein-binding site to CUB domains 13-14. In conclusion, the N-terminal cubilin region seems crucial for membrane association, whereas the CUB domain cluster harbors distinct sites for ligand binding.  (+info)

Cellular import of cobalamin (Vitamin B-12). (3/157)

Recent studies have isolated and characterized human gastric intrinsic factor (IF) and transcobalamin II (TC II) genes, whose products mediate the import of cobalamin (Cbl; Vitamin B-12) across cellular plasma membranes. Analyses of cDNA and genomic clones of IF and TC II have provided some important insights into their sites of expression, structure and function. IF and TC II genes contain the same number, size and position of exons, and four of their eight intron-exon boundaries are identical. In addition, they share high homology in certain regions that are localized to different exons, indicating that IF and TC II may have evolved from a common ancestral gene. Both IF and TC II mediate transmembrane transport of Cbl via their respective receptors that function as oligomers in the plasma membrane. IF-mediated import of Cbl is limited to the apical membranes of epithelial cells; it occurs via a multipurpose receptor recently termed "cubilin," and the imported Cbl is usually exported out of these cells bound to endogenous TC II. On the other hand, TC II-mediated Cbl import occurs in all cells, including epithelial cells via a specific receptor, and the Cbl imported is usually retained, converted to its coenzyme forms, methyl-Cbl and 5'-deoxyadenosyl-Cbl, and utilized.  (+info)

Genetic evidence of an accessory activity required specifically for cubilin brush-border expression and intrinsic factor-cobalamin absorption. (4/157)

Cubilin is a high molecular weight multiligand receptor that mediates intestinal absorption of intrinsic factor-cobalamin and selective protein reabsorption in renal tubules. The genetic basis of selective intestinal cobalamin malabsorption with proteinuria was investigated in a canine model closely resembling human Imerslund-Grasbeck syndrome caused by cubilin mutations. Canine CUBN cDNA was cloned and sequenced, showing high identity with human and rat CUBN cDNAs. An intragenic CUBN marker was identified in the canine family and used to test the hypothesis of genetic linkage of the disease and CUBN loci. Linkage was rejected, indicating that the canine disorder resembling Imerslund-Grasbeck syndrome is caused by defect of a gene product other than cubilin. These results imply that there may be locus heterogeneity among human kindreds with selective intestinal cobalamin malabsorption and proteinuria and that normal brush-border expression of cubilin requires the activity of an accessory protein.  (+info)

The rise in circulating gastrin with age is due to increases in gastric autoimmunity and Helicobacter pylori infection. (5/157)

To assess the effect of increasing age on circulating gastrin, we surveyed serum gastrin, Helicobactor pylori seroantibody status and gastric autoimmunity in 366 hospitalized patients aged 15-90 years. Data were subjected to multivariate analysis, using logarithmic transformation to normalize the distribution of gastrin concentrations (presented as geometric means and 95% CIs). The frequency of H. pylori-positive antibody status increased with age from 28% in the second decade to > 70% beyond the fourth decade. Fasting gastrin concentrations rose significantly from 44 ng/l (41-48) in the second decade to 95 ng/l (67-131) by the eighth decade (p = 0.001) in the total group. Twenty-seven patients (6.8% of the total) tested positive for gastric auto-antibodies: 2% of patients in the second decade, rising to 15.9% in the eighth decade. These patients formed a distinct group with respect to circulating gastrin concentrations. Excluding these 27, fasting gastrin concentrations still rose significantly, from 44 ng/l (41-48) in the second decade, to 67 ng/l (50-89) in the eighth decade (p = 0.003) in the remaining 341 patients. Fasting gastrin concentrations were significantly higher in patients who were H. pylori-seropositive (59 ng/l, 54-64 vs. sero-negative 41 ng/l, 37-46) (p = 0.002), and there was no increase in circulating gastrin concentrations with increasing age in either the H. pylori-positive or the H. pylori-negative group. The increase in circulating fasting gastrin observed with increasing age is due to an increased incidence of gastric antibodies associated with auto-immune atrophic gastritis, and an increased incidence of H. pylori infection.  (+info)

Tolerance and autoimmunity to a gastritogenic peptide in TCR transgenic mice. (6/157)

The catalytic alpha and glycoprotein beta subunits of the gastric H/K ATPase are major molecular targets in human and mouse autoimmune gastritis. We have previously shown that the H/K ATPase beta subunit is required for the initiation of mouse gastritis and identified a gastritogenic H/K ATPase beta subunit peptide (H/Kbeta253-277). Here we report the generation of MHC class II-restricted TCR transgenic mice using V(alpha)9 and V(beta)8.3 TCR chains with specificity for the gastritogenic H/Kbeta253-277 peptide. We found an 8-fold reduction in CD4(+) T cells in the thymus of the transgenic mice. Despite the reduction in intrathymic CD4(+) T cells, V(beta)8. 3-expressing T cells comprised the majority (>90%) of peripheral spleen and lymph node T cells. These peripheral T cells retained their capacity to proliferate in vitro to the H/Kbeta253-277 peptide. Using the responsive T cells, we have restricted the gastritogenic T cell epitope to H/Kbeta261-274. Despite the capacity of the peripheral T cells to proliferate in vitro to the peptide, the majority ( approximately 80%, 13 of 16) of transgenic mice remained free of gastritis while a minority (20%, three of 16) spontaneously developed an invasive and destructive gastritis. Our results confirm that H/Kbeta261-274 is a gastritogenic peptide. The data also suggest that CD4 T cell tolerance to the gastritogenic peptide in the transgenic mice is maintained by a combination of intrathymic and peripheral tolerance mechanisms.  (+info)

Biological properties of antibodies against rat adipocyte intrinsic membrane proteins. Dependence on multivalency for insulin-like activity. (7/157)

Antisera from rabbits injected with rat adipocyte plasma membranes or intrinsic proteins from such membranes, obtained by a dimethylmaleic anhydride extraction step, mimicked the action of insulin on both glucose transport and lipolysis in intact adipocytes. Biological activity in both types of antisera was mediated by immunoglobulin binding to one or more intrinsic proteins of the adipocyte plasma membrane since fat cells were unresponsive to all antisera absorbed with dimethylmaleic anhydride-extracted membranes. Acid treatment of immunoprecipitates released antibodies which activated glucose uptake and reacted with solubilized adipocyte membranes on immunodiffusion plates. The biologically active immunoglobulin preparations failed to form immunoprecipitin lines when tested against membranes from brain, liver, lung, muscle, kidney, and spleen. Insulin-sensitive glucose uptake in rat soleus muscle did not respond to the antisera. The antibodies activated hexose uptake into fat cells and reacted with solubilized adipocyte membranes on immunodiffusion plates when rat or mouse adipocytes were studied, but not when monkey fat cells were used. The anti-membrane antibody preparations readily activated hexose uptake in trypsinized fat cells which had lost the capacity to bind or respond to insulin. These data are consistent with the concept previously proposed (Pillion, D.J., and Czech, M.P. (1978) J. Biol. Chem. 253, 3761-3764) that the anti-membrane immunoglobulins do not interact with the insulin binding site of the insulin receptor. Monovalent Fab fragments of the biologically active antisera, prepared by papain digestion of the native anti-membrane immunoglobulins, were ineffective in enhancing glucose uptake in adipocytes. However, biological activity of the anti-membrane Fab fragments was restored by the addition of goat anti-rabbit Fab antisera to cells treated with the Fab fraction. Anti-rabbit Fab antisera alone or in combination with Fab fragments prepared from control rabbit sera exhibited no biological activity. These results demonstrate that the ability of anti-membrane antisera to mimic the biological activity of insulin on isolated fat cells is critically dependent on immunoglobulin binding to one or more intrinsic plasma membrane proteins and the multivalent nature of immunoglobulin structure.  (+info)

Functional expression in Pichia pastoris of human and rat intrinsic factor. (8/157)

Intrinsic factor (IF) has been expressed previously in Baculovirus with a yield (0.1-1 mg/l) that was inadequate for structural and metabolic studies. IF cDNAs were cloned into the shuttle vector pPIC9 of P. pastoris, and the proteins were induced and purified by cobalamin (Cbl) affinity chromatography. Expression of recombinant proteins revealed a major band of 49 kDa for both human and rat IF. Expression of human IF was achieved at 1040 mg/l, but of rat IF at only 1-2 mg/l. Reaction of human IF with a photo-activatable derivative of Cbl was demonstrated by Western blotting, and detection of IF fragments by anti-Cbl monoclonal antibody and by amino-terminal sequencing revealed at least three regions (residues 129-151, 234-254, and +294) linked to Cbl. Both recombinant human and rat [125I]IF-Cbl bound to rat and guinea pig brush border membranes with similar affinity, but the binding capacity of human IF for the rat receptor was only 10% compared with rat IF. All six amino acids within the previously identified N-terminal binding region of human IF were mutated to be identical to rat IF, but the resulting chimeric IF still bound poorly to rat membranes. Mutations of residues 26/27 (Glu26 to Asp and Asn27 to Gln) and 32/34 (Ser32 to Thr and Tyr34 to Arg) showed changes in both Ka and Vmax, with great effects on Vmax. In conclusion, P. pastoris is an expression system that produces functional human IF at a higher yield than in the baculovirus system. Cbl binding was directly demonstrated at multiple sites along the linear sequence of human IF. The receptor binding function of the amino terminal sequence 25 62 has been confirmed, but it is insufficient to reproduce all the features of IF-Cbl binding.  (+info)