Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. (33/505)

Azotobacter vinelandii forms both catecholate and azotobactin siderophores during iron-limited growth. Azotobactin is repressed by about 3 microM iron, but catecholate siderophore synthesis continues up to a maximum of 10 microM iron. This suggests that catecholate siderophore synthesis is regulated by other factors in addition to the ferric uptake repressor (Fur). In this study the first gene required for catecholate siderophore biosynthesis, which encodes an isochorismate synthase (csbC), was isolated. The region upstream of csbC contained a typical sigma(70) promoter, with an iron-box overlapping the -35 sequence and a Sox-box (Box 1) overlapping the -10 sequence. Another Sox-box was found further upstream of the -35 sequence (Box 2). Also upstream, an unidentified gene (orfA) was detected which would be transcribed from a divergent promoter, also controlled by an iron-box. The activity of csbC and a csbC::luxAB fusion was negatively regulated by iron availability and upregulated by increased aeration and by superoxide stress. The iron-box in the csbC promoter was 74% identical to the Fur-binding consensus sequence and bound the Fur protein of Escherichia coli with relatively high affinity. Both Box 1 and Box 2 were in good agreement with the consensus sequence for binding the SoxS protein of E. coli and Box 1 was in very good agreement with the Sox-box found in the fpr promoter of A. vinelandii, which is also regulated by superoxide stress. Both Sox-boxes bound a protein found in A. vinelandii cell extracts, with Box 1 exhibiting the higher binding affinity. The Sox protein identified in this assay appeared to be constitutive, rather than inducible by superoxide stress. This indicates that the Sox response in A. vinelandii is different from that in E. coli. These data support the hypothesis that catecholate siderophore biosynthesis is under dual control, repressed by a Fur-iron complex and activated by another DNA-binding protein in response to superoxide stress. The interaction between these regulators is likely to account for the delay in ferric repression of catecholate siderophore production, since these siderophores have an additional role to play in the protection of iron-limited cells against oxidative damage.  (+info)

Threonine phosphorylation of the beta 3 integrin cytoplasmic tail, at a site recognized by PDK1 and Akt/PKB in vitro, regulates Shc binding. (34/505)

The mechanism of outside-in signaling by integrins parallels that for growth factor receptors. In both pathways, phosphorylation of a cytoplasmic segment on tyrosine generates a docking site for proteins containing Src homology 2 (SH2) and phosphotyrosine binding domains. We recently observed that phosphorylation of a threonine (Thr-753), six amino acids proximal to tyrosine 759 in beta(3) of the platelet specific integrin alpha(IIb)beta(3), inhibits outside-in signaling through this receptor. We hypothesized that the presence of phosphothreonine 753 either renders beta(3) a poor substrate for tyrosine kinases or inhibits the docking capabilities of the tyrosyl-phosphorylated form of beta(3.) The first alternative was tested by comparing the phosphorylation of beta(3) model peptides by the tyrosine kinase pp60(c-src) and we found that the presence of a phosphate group on a residue corresponding to Thr-753 did not detectably alter the kinetics of tyrosine phosphorylation. However, the presence of phosphate on this threonine inhibited the binding of Shc to tyrosyl-phosphorylated beta(3) peptide. The inhibitory effect of the phosphate group could be mimicked by substituting an aspartic acid for Thr-753, suggesting that a negative charge at this position modulates the binding of Shc and possibly other phosphotyrosine binding domain- and SH2-containing proteins. A survey of several protein kinases revealed that Thr-753 was avidly phosphorylated by PDK1 and Akt/PKB in vitro. These observations suggest that activation of PDK1 and/or Akt/PKB in platelets may modulate the binding activity and/or specificity of beta(3) for signaling molecules.  (+info)

Biosynthesis of the galactan component of the mycobacterial cell wall. (35/505)

The structural core of the cell walls of Mycobacterium spp. consists of peptidoglycan bound by a linker unit (-alpha-L-Rhap-(1-->3)-D-GlcNAc-P-) to a galactofuran, which in turn is attached to arabinofuran and mycolic acids. The sequence of reactions leading to the biogenesis of this complex starts with the formation of the linker unit on a polyprenyl-P to produce polyprenyl-P-P-GlcNAc-Rha (Mikusova, K., Mikus, M., Besra, G. S., Hancock, I., and Brennan, P. J. (1996) J. Biol. Chem. 271, 7820-7828). We now establish that formation of the galactofuran takes place on this intermediate with UDP-Galf as the Galf donor presented in the form of UDP-Galp and UDP-Galp mutase (the glf gene product) and is catalyzed by galactofuranosyl transferases, one of which, the Mycobacterium tuberculosis H37Rv3808c gene product, has been identified. Evidence is also presented for the growth of the arabinofuran on this polyprenyl-P-P-linker unit-galactan intermediate catalyzed by unidentified arabinosyl transferases, with decaprenyl-P-Araf or 5-P-ribosyl-PP as the Araf donor. The product of these steps, the lipid-linked-LU-galactan-arabinan has been partially characterized in terms of its heterogeneity, size, and composition. Biosynthesis of the major components of mycobacterial cell walls is proving to be extremely complex. However, partial definition of arabinogalactan synthesis, the site of action of several major anti-tuberculosis drugs, facilitates the present day thrust for new drugs to counteract multiple drug-resistant tuberculosis.  (+info)

Ubiquitin-mediated proteolysis of a short-lived regulatory protein depends on its cellular localization. (36/505)

In this study we demonstrate that the Deg1 degradation signal of the transcriptional repressor Matalpha2 confers compartment-specific turnover to a reporter protein. Rapid degradation of a Deg1-containing fusion protein is observed only when the reporter is efficiently imported into the nucleus. In contrast, a reporter that is constantly exported from the nucleus exhibits an extended half-life. Furthermore, nuclear import functions are crucial for both Deg1-induced degradation as well as for the turnover of the endogenous Matalpha2 protein. The conjugation of ubiquitin to a Deg1-containing reporter protein is abrogated in mutants affected in nuclear import. Obviously, the Deg1 signal initiates rapid proteolysis within the nucleoplasm, whereas in the cytosol it mediates turnover via a slower pathway. In both pathways the ubiquitin-conjugating enzymes Ubc6p/Ubc7p play a pivotal role. These observations imply that both the cellular targeting of a substrate and the compartment-specific activity of components of the ubiquitin-proteasome system define the half-life of naturally short-lived proteins.  (+info)

The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. (37/505)

The biosynthetic gene cluster of the myxochelin-type iron chelator was cloned from Stigmatella aurantiaca Sg a15 and characterized. This catecholate siderophore was only known from two other myxobacteria. The biosynthetic genes of 2,3-dihydroxybenzoic acid are located in the cluster (mxcC-mxcF). Two molecules of 2, 3-dihydroxybenzoic acid are activated and condensed with lysine in a unique way by a protein homologous to nonribosomal peptide synthetases (MxcG). Inactivation of mxcG, which encodes an adenylation domain for lysine, results in a myxochelin negative mutant unable to grow under iron-limiting conditions. Growth could be restored by adding Fe3+, myxochelin A or B to the medium. Inactivation of mxcD leads to the same phenotype. A new type of reductive release from nonribosomal peptide synthetases of the 2, 3-dihydroxybenzoic acid bis-amide of lysine from MxcG, catalyzed by a protein domain with homology to NAD(P) binding sites, is discussed. The product of a gene, encoding a protein similar to glutamate-1-semialdehyde 2,1-aminomutases (mxcL), is assumed to transaminate the aldehyde that is proposed as an intermediate. Further genes encoding proteins homologous to typical iron utilization and iron uptake polypeptides are reported.  (+info)

Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution. (38/505)

BACKGROUND: Two regions of squalene-hopene cyclase (SHC) were examined to define roles for motifs posited to be responsible for initiation and termination of the enzyme-catalyzed polyolefinic cyclizations. Specifically, we first examined the triple mutant of the DDTAVV motif, a region deeply buried in the catalytic cavity and thought to be responsible for the initiation of squalene cyclization. Next, four mutants were prepared for Glu45, a residue close to the substrate entrance channel proposed to be involved in the termination of the cyclization of squalene. RESULTS: The DDTAVV motif in SHC was changed to DCTAEA, the corresponding conserved region of eukaryotic oxidosqualene cyclase (OSC), by the triple mutation of D377C/V380E/V381A; selected single mutants were also examined. The triple mutant showed no detectable cyclization of squalene, but effectively cyclized 2,3-oxidosqualene to give mono- and pentacyclic triterpene products. Of the Glu45 mutants, E45A and E45D showed reduced activity, E45Q showed slightly increased activity, and E45K was inactive. A normal yield of pentacyclic products was produced, but the ratio of hopene 2 to hopanol 3 was significantly changed in the less active mutants. CONCLUSIONS: Initiation and substrate selectivity may be determined by the interaction of the DDTAVV motif with the isopropylidene of squalene (for SHC) and of the DCTAEA motif with the epoxide of oxidosqualene (for OSC). This is the first report of a substrate switch determined by a central catalytic motif in a triterpenoid cyclase. At the termination of cyclization, the product ratio may be largely controlled by Glu45 at the entrance channel to the active site.  (+info)

The functional significance of Shc in insulin signaling as a substrate of the insulin receptor. (39/505)

Shc is composed of 46-, 52-, 66-kDa isoforms which arise from alternative splicing of the primary Shc transcript. Upon insulin stimulation, the activated insulin receptor interacts with Shc. The NPXY motif around 960-Tyr residue of the insulin receptor binds to the N-terminal PTB domain of Shc. Subsequently, the 52-kDa, and, to a lesser extent, the 46-kDa Shc isoforms are tyrosine phosphorylated. Although Tyr-239/240 and Tyr-317 residues are the possible candidates of Shc phosphorylation sites, insulin predominantly phosphorylates the Shc Tyr-317 residue. Phosphorylated Shc binds to Grb2 which forms a complex with Sos guanine nucleotide exchange factor for p21ras. Both tyrosine-phosphorylated Shc and IRS can bind to Grb2, but Shc . Grb2 . Sos is the predominant coupling pathway from the activated insulin receptor to p21ras. Along this line, microinjection of anti-Shc antibody inhibited insulin-induced mitogenesis, and the guanine nucleotide exchange activity for p21ras is tightly associated with Shc, but not with IRS. On the other hand, insulin only transiently activates p21ras for the strict hormonal regulation. For this regulation, longer time of insulin treatment deactivates p21ras by dissociation of Sos from the Shc . Grb2 . Sos complex while Shc is still complexed with Grb2. Thus, Shc plays a critical role in insulin-induced mitogenesis through regulation of p21ras activity. As regards the impact of Shc on the metabolic aspects, Shc is shown to compete with IRS as the substrate of the insulin receptor. Thus, IRS mediated downstream signaling leading to glycogen synthesis was decreased by overexpression of Shc. Taken together, Shc appears to play an important role in insulin induced mitogenesis, whereas Shc may not be required for regulation of the metabolic aspects of insulin.  (+info)

Switching osmolyte strategies: response of Methanococcus thermolithotrophicus to changes in external NaCl. (40/505)

Methanococcus thermolithotrophicus, a thermophilic methanogenic archaeon, produces and accumulates beta-glutamate and L-alpha-glutamate as osmolytes when grown in media with <1 M NaCl. When the organism is adapted to grow in >1 M NaCl, a new zwitterionic solute, N(epsilon)-acetyl-beta-lysine, is synthesized and becomes the dominant osmolyte. Several techniques, including in vivo and in vitro NMR spectroscopy, HPLC analyses of ethanol extracts, and potassium atomic absorption, have been used to monitor the immediate response of M. thermolithotrophicus to osmotic stress. There is a temporal hierarchy in the response of intracellular osmolytes. Changes in intracellular K(+) occur within the first few minutes of altering the external NaCl. Upon hypoosmotic shock, K(+) is released from the cell; relatively small changes occur in the organic osmolyte pool on a longer time scale. Upon hyperosmotic shock, M. thermolithotrophicus immediately internalizes K(+), far more than would be needed stoichiometrically to balance the new salt concentration. This is followed by a decrease to a new K(+) concentration (over 10-15 min), at which point synthesis and accumulation of primarily L-alpha-glutamate occur. Once growth of the M. thermolithotrophicus culture begins, typically 30-100 min after the hyperosmotic shock, the intracellular levels of organic anions decrease and the zwitterion (N(epsilon)-acetyl-beta-lysine) begins to represent a larger fraction of the intracellular pool. The observation that N(epsilon)-acetyl-beta-lysine accumulation occurs in osmoadapted cells but not immediately after osmotic shock is consistent with the hypothesis that lysine 2,3-aminomutase, an enzyme involved in N(epsilon)-acetyl-beta-lysine synthesis, is either not present at high levels or has low activity in cells grown and adapted to lower NaCl. That lysine aminomutase specific activity is 8-fold lower in protein extracts from cells adapted to low NaCl compared to those adapted to 1.4 M NaCl supports this hypothesis.  (+info)