A MAP kinase docking site is required for phosphorylation and activation of p90(rsk)/MAPKAP kinase-1. (41/14921)

Activation of the various mitogen-activated protein (MAP) kinase pathways converts many different extracellular stimuli into specific cellular responses by inducing the phosphorylation of particular groups of substrates. One important determinant for substrate specificity is likely to be the amino-acid sequence surrounding the phosphorylation site; however, these sites overlap significantly between different MAP kinase family members. The idea is now emerging that specific docking sites for protein kinases are involved in the efficient binding and phosphorylation of some substrates [1] [2] [3] [4]. The MAP kinase-activated protein (MAPKAP) kinase p90 rsk contains two kinase domains [5]: the amino-terminal domain (D1) is required for the phosphorylation of exogenous substrates whereas the carboxy-terminal domain (D2) is involved in autophosphorylation. Association between the extracellular signal-regulated kinase (Erk) MAP kinases and p90(rsk) family members has been detected in various cell types including Xenopus oocytes [6] [7] [8], where inactive p90(rsk) is bound to the inactive form of the Erk2- like MAP kinase p42(mpk1). Here, we identify a new MAP kinase docking site located at the carboxyl terminus of p90(rsk). This docking site was required for the efficient phosphorylation and activation of p90(rsk) in vitro and in vivo and was also both necessary and sufficient for the stable and specific association with p42(mpk1). The sequence of the docking site was conserved in other MAPKAP kinases, suggesting that it might represent a new class of interaction motif that facilitates efficient and specific signal transduction by MAP kinases.  (+info)

Retardation of cell proliferation after expression of p202 accompanies an increase in p21(WAF1/CIP1). (42/14921)

p202 is an IFN-inducible, primarily nuclear, phosphoprotein (52-kDa) whose constitutive overexpression in transfected cells inhibits colony formation. To investigate the molecular mechanism(s) by which expression of p202 protein impairs colony formation, we established stable cell lines that inducibly express p202. Using this cell model, we demonstrate that the induced expression of p202 in asynchronous cultures of these cells was accompanied by: (a) an increase in steady-state levels of p21(WAF1/CIP1/SDI1) (p21) mRNA and protein; (b) a decrease in Cdk2 protein kinase activity; and (c) an increase in the functional form of retinoblastoma protein (pRb). Transient transfection of a p202-encoding plasmid in Saos-2 cells, which do not harbor a wild-type p53 protein, resulted in an increase in p21 protein, which indicated that p202 could regulate expression of p21 protein independent of p53 protein. Moreover, we demonstrate that expression of p202 in these cells increased cell doubling time without accumulation of cells in a particular phase of the cell cycle. Taken together, these results are consistent with the possibility that p202 protein contributes to the cell growth retardation activity of the IFNs, at least in part, by modulating p21 protein levels.  (+info)

Volume expansion stimulates p72(syk) and p56(lyn) in skate erythrocytes. (43/14921)

Hypotonic volume expansion of skate erythrocytes rapidly stimulates the tyrosine phosphorylation of band 3, the membrane protein thought to mediate the osmotically sensitive taurine efflux. Skate erythrocytes possess numerous tyrosine kinases including p59fyn, p56lyn, pp60(src), and p72(syk), demonstrated by immune complex assays measuring autocatalytic kinase activity. Inclusion of the cytoplasmic domain of band 3 in this assay showed that only Syk and Lyn can directly phosphorylate the cytoplasmic domain of band 3. Upon cell volume expansion, Syk activity was increased as assessed by three different assays (immune complex assay measuring autophosphorylation, assay of the level of phosphotyrosine of the immunoprecipitated kinase, and assay of level of 32P in the kinase immunoprecipitated from cells prelabeled with 32PO4 and then volume-expanded). The tyrosine kinase Lyn was also stimulated by volume expansion, most notably when analyzed by the latter two methods. Volume expansion stimulated a large increase in the ability of Syk to phosphorylate band 3 at times that coincide with the stimulation of taurine flux. The stilbene piceatannol inhibited Syk preferentially over Lyn and other tyrosine kinases and inhibited volume-stimulated taurine efflux in a concentration-dependent manner similar to that for the inhibition of Syk. Two major phosphorylation peaks were detected in tryptic digests of cdb3 separated by reverse phase HPLC. Edman degradation demonstrated a phosphotyrosine in a YXXL motif. In conclusion, p72(syk) appears to be a strong candidate as a pivotal signal-transducing step in the volume-activated taurine efflux in skate red cells. The level of band-3 phosphorylation may be regulated, in addition, by a protein-tyrosine phosphatase of the 1B variety.  (+info)

Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. (44/14921)

Androgen receptor (AR) is a hormone-activated transcriptional factor that can bind to androgen response elements and that regulates the transcription of target genes via a mechanism that presumably involves cofactors. We report here the cloning of a novel AR coactivator ARA55 using a yeast two-hybrid system. ARA55 consists of 444 amino acids with the predicted molecular mass of 55 kDa and its sequence shows very high homology to mouse hic5, a TGF-beta1-inducible gene. Yeast and mammalian two-hybrid systems and co-immunoprecipitation assays all prove ARA55 can bind to AR in a ligand-dependent manner. Transient transfection assay in prostate cancer DU145 cells further demonstrates that ARA55 can enhance AR transcriptional activity in the presence of 1 nM dihydrotestosterone or its antagonists such as 100 nM 17beta-estradiol or 1 microM hydroxyflutamide. Our data also suggest the C-terminal half of ARA55, which includes three LIM motifs, is sufficient to interact with AR. Northern blot and polymerase chain reaction quantitation showed ARA55 can be expressed differently in normal prostate and prostate tumor cells. Together, our data suggests that ARA55 may play very important roles in the progression of prostate cancer by the modulation of AR transactivation.  (+info)

The effect of the orexins on food intake: comparison with neuropeptide Y, melanin-concentrating hormone and galanin. (45/14921)

Orexin-A and orexin-B (the hypocretins) are recently described neuropeptides suggested to have a physiological role in the regulation of food intake in the rat. We compared the orexigenic effect of the orexins administered intracerebroventricular (ICV) with other known stimulants of food intake, one strong, neuropeptide Y (NPY), and two weaker, melanin-concentrating hormone (MCH) and galanin. Orexin-A consistently stimulated food intake, but orexin-B only on occasions. Both peptides stimulated food intake significantly less than NPY, but to a similar extent to MCH (2 h food intake: NPY 3 nmol, 7.2+/-0.9 g vs saline, 1.5+/-0.2 g, P<0.001, MCH 3 nmol, 3.2+/-0.8 g vs saline, P<0.01, orexin-B 30 nmol, 2. 6+/-0.5 g vs saline, P=0.11) and to galanin (1 h food intake: galanin 3 nmol, 2.0+/-0.4 g vs saline, 0.8+/-0.2 g, P<0.05, orexin-A 3 nmol 2.2+/-0.4 g vs saline, P<0.01; 2 hour food intake: orexin-B 3 nmol, 2.4+/-0.3 g vs saline, 1.3+/-0.2 g, P<0.05). Following ICV orexin-A, hypothalamic c-fos, a maker of neuronal activation, was highly expressed in the paraventricular nucleus (PVN), and the arcuate nucleus (P<0.005 for both). IntraPVN injection of orexin-A stimulated 2 h food intake by one gram (orexin-A 0.03 nmol, 1.6+/-0. 3 g vs saline, 0.5+/-0.3 g, P<0.005). These findings support the suggestion that the orexins stimulate food intake. However, this effect is weak and may cast doubt upon their physiological importance in appetite regulation in the rat.  (+info)

Exclusion of insulin receptor substrate 2 (IRS-2) as a major locus for early-onset autosomal dominant type 2 diabetes. (46/14921)

We investigated whether variability at the insulin receptor substrate (IRS)-2 locus plays a role in the etiology of early-onset autosomal dominant type 2 diabetes. By means of radiation hybrid mapping, we placed the human IRS-2 gene on 13q at 8.6 cRays from SHGC-37358. Linkage between diabetes and two polymorphic markers located in this region (D13S285 and D13S1295) was then evaluated in 29 families with early-onset autosomal dominant type 2 diabetes. Included were 220 individuals with diabetes, impaired glucose tolerance, or gestational diabetes (mean age at diabetes diagnosis 36 +/- 17 years) and 146 nondiabetic subjects. Overall, strongly negative logarithm of odds (LOD) scores for linkage with diabetes were obtained by multipoint parametric analysis (LOD score -45.4 at D13S285 and -40.9 at D13S1295). No significant evidence of linkage was obtained under the hypothesis of heterogeneity or by nonparametric methods. Fourteen pedigrees for which linkage could not be excluded (LOD score > -2.0) were screened for mutations in the IRS-2 coding region by dideoxy fingerprinting. However, no mutations segregating with diabetes could be detected in these families. These data indicate that IRS-2 is not a major gene for early-onset autosomal dominant type 2 diabetes, although a role of mutations in the promoter region cannot be excluded at this time.  (+info)

Human ligands of the Notch receptor. (47/14921)

During development, the Notch signaling pathway is essential for the appropriate differentiation of many cell types in organisms across the phylogenetic scale, including humans. Notch signaling is also implicated in human diseases, including a leukemia and two hereditary syndromes known as Alagille and CADASIL. To generate tools for pursuing the role of the Notch pathway in human disease and development, we have cloned and analyzed the expression of three human homologues of the Notch ligands Delta and Serrate, human Jagged1 (HJ1), human Jagged2 (HJ2), and human Delta1 (H-Delta-1), and determined their chromosomal localizations. We have also raised antibodies to HJ1, and used these antibodies in conjunction with in situ hybridization to examine the expression of these ligands in normal and cancerous cervical tissue. We find that, as reported previously for Notch, the ligands are up-regulated in certain neoplastic tissues. This observation is consistent with the notion that Notch signaling is an important element in these pathogenic conditions, raising the possibility that modulation of Notch activity could be used to influence the fate of the cells and offering a conceivable therapeutic avenue.  (+info)

Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. (48/14921)

Flt3 ligand (FL) is an early-acting potent co-stimulatory cytokine that regulates proliferation and differentiation of a number of blood cell lineages. Its receptor Flt3/Flk2 belongs to class III receptor tyrosine kinases that also include the receptors for colony-stimulating factor 1, Steel factor, and platelet-derived growth factor. Using CSF-1 receptor/Flt3 chimeras, two groups have characterized some of the post-receptor signaling events and substrate specificity of murine Flt3 receptor. However, there are few studies on the signaling pathway through human Flt3. We examined human Flt3 signaling pathways in a murine IL-3-dependent hematopoietic cell line Baf3, which stably expresses full-length human Flt3 receptor. This subline proliferates in response to human FL. Like the chimeric murine Flt3, human Flt3 undergoes autophosphorylation, associates with Grb2, and leads to tyrosine phosphorylation of Shc on ligand binding. We found that SHP-2, but not SHP-1, is tyrosine-phosphorylated by FL stimulation. SHP-2 does not associate with Flt3, but binds directly to Grb2. SHIP is also tyrosine-phosphorylated and associates with Shc after FL simulation. We further examined the downstream signaling pathway. FL transiently activates MAP kinase. This activation could be blocked by PD98059, a specific MEK inhibitor. PD98059 also blocked cell proliferation in response to FL. These results demonstrate that SHP-2 and SHIP are important components in the human Flt3 signaling pathway and suggest that SHP-2 and SHIP, by forming complexes with adapter proteins Grb2 and Shc, may modulate MAP kinase activation, which may be necessary for the mitogenic signaling of Flt3.  (+info)