Cellular uptake of biotin: mechanisms and regulation. (9/5177)

This review describes our knowledge of biotin transport in the small intestine of humans and other mammals and presents recent findings in the area. Previous studies have shown that biotin transport across the brush border membrane of the small intestinal absorptive cells occurs via a carrier-mediated, Na+ gradient-dependent, electroneutral mechanism. Exit of biotin out of the enterocyte, i.e., transport across the basolateral membrane, also occurs via a carrier-mediated process, but the process is Na+ independent and electrogenic. Recent studies from our laboratory have shown that the uptake process of biotin in Caco-2 cells, a human-derived cultured intestinal epithelial cell line, are under the cellular regulation of both a protein kinase C- and a Ca/calmodulin-mediated pathway. In addition, the uptake process is shared by another water-soluble vitamin, pantothenic acid. For the first time, other recent studies have detected the existence of a Na+-dependent, carrier-mediated mechanism for biotin uptake at the apical membrane of colonocytes, which could theoretically mediate absorption of the biotin synthesized by colonic microflora. This system was again found to be shared by pantothenic acid, which is also synthesized by the normal microflora of the large intestine.  (+info)

Burden of infection on growth failure. (10/5177)

The high prevalence of infections among children living in poor areas of developing countries impairs linear growth in these populations. Acute, invasive infections, which provoke a systemic response (e.g., dysentery and pneumonia), and chronic infections, which affect the host over a sustained period (e.g., gut helminth infections), have a substantial effect on linear growth. Such infections can diminish linear growth by affecting nutritional status. This occurs because infections may decrease food intake, impair nutrient absorption, cause direct nutrient losses, increase metabolic requirements or catabolic losses of nutrients and, possibly, impair transport of nutrients to target tissues. In addition, induction of the acute phase response and production of proinflammatory cytokines may directly affect the process of bone remodeling that is required for long bone growth. Infection of cells directly involved in bone remodeling (osteoclasts or osteoblasts) by specific viruses may also directly affect linear growth. Many interventions are possible to diminish the effect of infection on growth. Prevention of disease through sanitation, vector control, promotion of breast-feeding and vaccination is crucial. Appropriate treatment of infections (e.g., antibiotics for pneumonia) as well as supportive nutritional therapy (again including breast-feeding) during and after recovery, is also important. Targeted therapeutic interventions to decrease the prevalence of gut helminth infections may also be appropriate in areas in which such infections are widespread. Such interventions are of public health benefit not only because they reduce the incidence or severity of infections, but also because they decrease the long-term detrimental effect of malnutrition on populations.  (+info)

Comparison of synthetic saponin cholesterol absorption inhibitors in rabbits: evidence for a non-stoichiometric, intestinal mechanism of action. (11/5177)

The hypocholesterolemic activities of pamaqueside and tiqueside, two structurally similar saponins, were evaluated in cholesterol-fed rabbits. The pharmacological profiles of the saponins were virtually identical: both dose-dependently decreased the intestinal absorption of labeled cholesterol 25-75%, increased fecal neutral sterol excretion up to 2.5-fold, and decreased hepatic cholesterol content 10-55%. High doses of pamaqueside (>5 mg/kg) or tiqueside (>125 mg/kg) completely prevented hypercholesterolemia. Decreases in plasma and hepatic cholesterol levels were strongly correlated with increased neutral sterol excretion. Ratios of neutral sterol excreted to pamaqueside administered were greater than 1:1 at all doses, in opposition to the formation of a stoichiometric complex previously suggested for tiqueside and other saponins. Ratios in tiqueside-treated rabbits were less than unity, a reflection of its lower potency. Pamaqueside-treated rabbits exhibited a more rapid decline in plasma cholesterol concentrations than control animals fed a cholesterol-free diet, indicating that the compound also inhibited the absorption of biliary cholesterol. Intravenous administration of pamaqueside had no effect on plasma cholesterol levels despite plasma levels twice those observed in rabbits given pamaqueside orally. These data indicate that pamaqueside and tiqueside induce hypocholesterolemia by blocking lumenal cholesterol absorption via a mechanism that apparently differs from the stoichiometric complexation of cholesterol hypothesized for other saponins.  (+info)

Effects of alcohol and cholesterol feeding on lipoprotein metabolism and cholesterol absorption in rabbits. (12/5177)

Alcohol fed to rabbits in a liquid formula at 30% of calories increased plasma cholesterol by 36% in the absence of dietary cholesterol and by 40% in the presence of a 0.5% cholesterol diet. The increase was caused almost entirely by VLDL, IDL, and LDL. Cholesterol feeding decreased the fractional catabolic rate for VLDL and LDL apoprotein by 80% and 57%, respectively, and increased the production rate of VLDL and LDL apoprotein by 75% and 15%, respectively. Alcohol feeding had no effect on VLDL apoprotein production but increased LDL production rate by 55%. The efficiency of intestinal cholesterol absorption was increased by alcohol. In the presence of dietary cholesterol, percent cholesterol absorption rose from 34.4+/-2.6% to 44.9+/-2.5% and in the absence of dietary cholesterol, from 84.3+/-1.4% to 88.9+/-1.0%. Increased cholesterol absorption and increased LDL production rate may be important mechanisms for exacerbation by alcohol of hypercholesterolemia in the cholesterol-fed rabbit model.  (+info)

Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response. (13/5177)

BACKGROUND: A chemically based classification of dietary carbohydrates that takes into account the likely site, rate, and extent of digestion is presented. The classification divides dietary carbohydrates into sugars, starch fractions, and nonstarch polysaccharides, and groups them into rapidly available glucose (RAG) and slowly available glucose (SAG) as to the amounts of glucose (from sugar and starch, including maltodextrins) likely to be available for rapid and slow absorption, respectively, in the human small intestine. OBJECTIVE: We hypothesize that RAG is an important food-related determinant of the glycemic response. DESIGN: The measurement of RAG, SAG, and starch fractions by an in vitro technique is described, based on the measurement by HPLC of the glucose released from a test food during timed incubation with digestive enzymes under standardized conditions. Eight healthy adult subjects consumed 8 separate test meals ranging in RAG content from 11 to 49 g. RESULTS: The correlation between glycemic response and RAG was highly significant (P < 0.0001) and a given percentage increase in RAG was associated with the same percentage increase in glycemic response. After subject variation was accounted for, RAG explained 70% of the remaining variance in glycemic response. CONCLUSIONS: We show the significance of in vitro measurements of RAG in relation to glycemic response in human studies. The simple in vitro measurement of RAG and SAG is of physiologic relevance and could serve as a tool for investigating the importance of the amount, type, and form of dietary carbohydrates for health.  (+info)

Effect of reducing the phytate content and of partially hydrolyzing the protein in soy formula on zinc and copper absorption and status in infant rhesus monkeys and rat pups. (14/5177)

BACKGROUND: Although soy formulas have been designed to meet the nutrient requirements of human infants, they also contain phytate, which may negatively affect trace element absorption. OBJECTIVE: We evaluated the effect of removing phytate on zinc and copper absorption and status in infant rhesus monkeys and suckling rat pups and evaluated differences between intact and partially hydrolyzed soy protein. DESIGN: In monkeys, regular and low-phytate soy formulas were fed exclusively for 4 mo and whole-body absorption and retention of 65Zn, 67Cu, 59Fe, 54Mn, and 47Ca were determined at different time points with a whole-body counter. Subsequently, zinc and copper absorption from several human infant formulas and the effect of phytate concentration were evaluated in suckling rat pups by using 65Zn and 64Cu. Finally, infant rhesus monkeys were fed low-phytate formulas with intact or hydrolyzed soy protein for 4 mo and plasma zinc and copper were measured monthly. RESULTS: In the first monkey study, zinc absorption at 1 mo was higher from low-phytate soy formula (36%) than from regular soy formula (22%), whereas there was no significant difference between groups in the absorption of other minerals. Plasma copper was significantly lower in monkeys fed low-phytate soy formula from 2 to 4 mo. In rat pups, zinc absorption was significantly higher from low-phytate soy formula (78%) than from regular soy formula (51%) and hydrolysis of the protein had no significant effect. Phytate content or protein hydrolysis did not significantly affect copper absorption. In the second monkey study, plasma copper concentrations were highest in monkeys fed the low-phytate, hydrolyzed-protein soy formula. CONCLUSION: Reducing the phytate content and partially hydrolyzing the protein in soy formula had a beneficial effect on zinc and copper absorption and status in infant rhesus monkeys.  (+info)

Influence of prenatal iron and zinc supplements on supplemental iron absorption, red blood cell iron incorporation, and iron status in pregnant Peruvian women. (15/5177)

BACKGROUND: It is estimated that 60% of pregnant women worldwide are anemic. OBJECTIVE: We aimed to examine the influence of iron status on iron absorption during pregnancy by measuring supplemental iron absorption, red blood cell iron incorporation, and iron status in pregnant women. DESIGN: Subjects were 45 pregnant Peruvian women (33+/-1 wk gestation), of whom 28 received daily prenatal supplements containing 60 mg Fe and 250 microg folate without (Fe group, n = 14) or with (Fe+Zn group, n = 14) 15 mg Zn, which were were consumed from week 10 to 24 of gestation until delivery. The remaining 17 women (control) received no prenatal supplementation. Iron status indicators and isotopes were measured in maternal blood collected 2 wk postdosing with oral (57Fe) and intravenous (58Fe) stable iron isotopes. RESULTS: Maternal serum ferritin and folate concentrations were significantly influenced by supplementation (P < 0.05). Serum iron was also significantly higher in the Fe than in the Fe+Zn (P < 0.03) or control (P < 0.001) groups. However, the supplemented groups had significantly lower serum zinc concentrations than the control group (8.4+/-2.3 and 10.9+/-1.8 micromol/L, respectively, P < 0.01). Although percentage iron absorption was inversely related to maternal serum ferritin concentrations (P = 0.036), this effect was limited and percentage iron absorption did not differ significantly between groups. CONCLUSIONS: Because absorption of nonheme iron was not substantially greater in pregnant women with depleted iron reserves, prenatal iron supplementation is important for meeting iron requirements during pregnancy.  (+info)

Oligofructose stimulates calcium absorption in adolescents. (16/5177)

BACKGROUND: In rats, nondigestible oligosaccharides stimulate calcium absorption. Recently, this effect was also found in human subjects. OBJECTIVE: The objective of the study was to investigate whether consumption of 15 g oligofructose/d stimulates calcium absorption in male adolescents. DESIGN: Twelve healthy, male adolescents aged 14-16 y received, for 9 d, 15 g oligofructose or sucrose (control treatment) daily over 3 main meals. The treatments were given according to a randomized, double-blind, crossover design, separated by a 19-d washout period. On the 8th day of each treatment period, 44Ca was given orally with a standard breakfast containing approximately 200 mg Ca. Within half an hour after administration of 44Ca, 48Ca was administered intravenously. Fractional calcium absorption was computed from the enrichment of 44Ca:43Ca and 48Ca:43Ca in 36-h urine samples, which was measured by inductively coupled plasma mass spectrometry. RESULTS: An increase in true fractional calcium absorption (%) was found after consumption of oligofructose (mean difference +/- SE of difference: 10.8+/-5.6; P < 0.05, one sided). The results are discussed in relation to the methods used. CONCLUSION: Fifteen grams of oligofructose per day stimulates fractional calcium absorption in male adolescents.  (+info)