Ringo, Doty, Demeter and Simard, Cerebral Cortex 1994;4:331-343: a proof of the need for the spatial clustering of interneuronal connections to enhance cortical computation. (1/3683)

It has been argued that an important principle driving the organization of the cerebral cortex towards local processing has been the need to decrease time lost to interneuronal conduction delay. In this paper, I show for a simplified model of the cerebral cortex, using analytical means, that if interneuronal conduction time increases proportional to interneuronal distance, then the only way to increase the numbers of synaptic events occurring in a fixed finite time period is to spatially cluster interneuronal connections.  (+info)

Developmental synaptic changes increase the range of integrative capabilities of an identified excitatory neocortical connection. (2/3683)

Excitatory synaptic transmission between pyramidal cells and fast-spiking (FS) interneurons of layer V of the motor cortex was investigated in acute slices by using paired recordings at 30 degrees C combined with morphological analysis. The presynaptic and postsynaptic properties at these identified central synapses were compared between 3- and 5-week-old rats. At these two postnatal developmental stages, unitary EPSCs were mediated by the activation of AMPA receptors with fast kinetics at a holding potential of -72 mV. The amplitude distribution analysis of the EPSCs indicates that, at both stages, pyramidal-FS connections consisted of multiple functional release sites. The apparent quantal size obtained by decreasing the external calcium ([Ca2+]e) varied from 11 to 29 pA near resting membrane potential. In young rats, pairs of presynaptic action potentials elicited unitary synaptic responses that displayed paired-pulse depression at all tested frequencies. In older animals, inputs from different pyramidal cells onto the same FS interneuron had different paired-pulse response characteristics and, at most of these connections, a switch from depression to facilitation occurred when decreasing the rate of presynaptic stimulation. The balance between facilitation and depression endows pyramidal-FS connections from 5-week-old animals with wide integrative capabilities and confers unique functional properties to each synapse.  (+info)

Activity-dependent metaplasticity of inhibitory and excitatory synaptic transmission in the lamprey spinal cord locomotor network. (3/3683)

Paired intracellular recordings have been used to examine the activity-dependent plasticity and neuromodulator-induced metaplasticity of synaptic inputs from identified inhibitory and excitatory interneurons in the lamprey spinal cord. Trains of spikes at 5-20 Hz were used to mimic the frequency of spiking that occurs in network interneurons during NMDA or brainstem-evoked locomotor activity. Inputs from inhibitory and excitatory interneurons exhibited similar activity-dependent changes, with synaptic depression developing during the spike train. The level of depression reached was greater with lower stimulation frequencies. Significant activity-dependent depression of inputs from excitatory interneurons and inhibitory crossed caudal interneurons, which are central elements in the patterning of network activity, usually developed between the fifth and tenth spikes in the train. Because these interneurons typically fire bursts of up to five spikes during locomotor activity, this activity-dependent plasticity will presumably not contribute to the patterning of network activity. However, in the presence of the neuromodulators substance P and 5-HT, significant activity-dependent metaplasticity of these inputs developed over the first five spikes in the train. Substance P induced significant activity-dependent depression of inhibitory but potentiation of excitatory interneuron inputs, whereas 5-HT induced significant activity-dependent potentiation of both inhibitory and excitatory interneuron inputs. Because these metaplastic effects are consistent with the substance P and 5-HT-induced modulation of the network output, activity-dependent metaplasticity could be a potential mechanism underlying the coordination and modulation of rhythmic network activity.  (+info)

Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket cells. (4/3683)

Patch-clamp recordings were performed from stellate and basket cells in rat cerebellar slices. Under somatic voltage clamp, short depolarizing pulses were applied to elicit action potentials in the axon. After the action potential, a bicuculline- and Cd2+-sensitive current transient was observed. A similar response was obtained when eliciting axonal firing by extracellular stimulation. With an isotonic internal Cl- solution, the peak amplitude of this current varied linearly with the holding potential, yielding an extrapolated reversal potential of -20 to 0 mV. Unlike synaptic or autaptic GABAergic currents obtained in the same preparation, the current transient had a slow rise-time and a low variability between trials. This current was blocked when 10 mM BAPTA was included in the recording solution. In some experiments, the current transient elicited axonal action potentials. The current transient was reliably observed in animals aged 12-15 d, with a mean amplitude of 82 pA at -70 mV, but was small and rare in the age group 29-49 d. Numerical simulations could account for all properties of the current transient by assuming that an action potential activates a distributed GABAergic conductance in the axon. The actual conductance is probably restricted to release sites, with an estimated mean presynaptic current response of 10 pA per site (-70 mV, age 12-15 d). We conclude that in developing rats, stellate and basket cell axons have a high density of GABAergic autoreceptors and that a sizable fraction of the corresponding current can be measured from the soma.  (+info)

Neural mapping of direction and frequency in the cricket cercal sensory system. (5/3683)

Primary mechanosensory receptors and interneurons in the cricket cercal sensory system are sensitive to the direction and frequency of air current stimuli. Receptors innervating long mechanoreceptor hairs (>1000 microm) are most sensitive to low-frequency air currents (<150 Hz); receptors innervating medium-length hairs (900-500 microm) are most sensitive to higher frequency ranges (150-400 Hz). Previous studies demonstrated that the projection pattern of the synaptic arborizations of long hair receptor afferents form a continuous map of air current direction within the terminal abdominal ganglion (). We demonstrate here that the projection pattern of the medium-length hair afferents also forms a continuous map of stimulus direction. However, the afferents from the long and medium-length hair afferents show very little spatial segregation with respect to their frequency sensitivity. The possible functional significance of this small degree of spatial segregation was investigated, by calculating the relative overlap between the long and medium-length hair afferents with the dendrites of two interneurons that are known to have different frequency sensitivities. Both interneurons were shown to have nearly equal anatomical overlap with long and medium hair afferents. Thus, the differential overlap of these interneurons with the two different classes of afferents was not adequate to explain the observed frequency selectivity of the interneurons. Other mechanisms such as selective connectivity between subsets of afferents and interneurons and/or differences in interneuron biophysical properties must play a role in establishing the frequency selectivities of these interneurons.  (+info)

Neural changes after operant conditioning of the aerial respiratory behavior in Lymnaea stagnalis. (6/3683)

In this study, we demonstrate neural changes that occurred during operant conditioning of the aerial respiratory behavior of Lymnaea stagnalis. Aerial respiration in Lymnaea occurs at the water interface and is achieved by opening and closing movements of its respiratory orifice, the pneumostome. This behavior is controlled by a central pattern generator (CPG), the neurons of which, as well as the motoneurons innervating the pneumostome, have previously been identified and their synaptic connections well characterized. The respiratory behavior was operantly conditioned by applying a mechanical stimulus to the open pneumostome whenever the animal attempted to breathe. This negative reinforcement to the open pneumostome resulted in its immediate closure and a significant reduction in the overall respiratory activity. Electrophysiological recordings from the isolated CNSs after operant conditioning showed that the spontaneous patterned respiratory activity of the CPG neurons was significantly reduced. This included reduced spontaneous activity of the CPG interneuron involved in pneumostome opening (input 3 interneuron) and a reduced frequency of spontaneous tonic activity of the CPG interneuron [right pedal dorsal 1 (RPeD1)]. The ability to trigger the patterned respiratory activity by electrical stimulation of RPeD1 was also significantly reduced after operant conditioning. This study therefore demonstrates significant changes within a CPG that are associated with changes in a rhythmic homeostatic behavior after operant conditioning.  (+info)

GABAergic excitatory synapses and electrical coupling sustain prolonged discharges in the prey capture neural network of Clione limacina. (7/3683)

Afterdischarges represent a prominent characteristic of the neural network that controls prey capture reactions in the carnivorous mollusc Clione limacina. Their main functional implication is transformation of a brief sensory input from a prey into a lasting prey capture response. The present study, which focuses on the neuronal mechanisms of afterdischarges, demonstrates that a single pair of interneurons [cerebral A interneuron (Cr-Aint)] is responsible for afterdischarge generation in the network. Cr-Aint neurons are electrically coupled to all other neurons in the network and produce slow excitatory synaptic inputs to them. This excitatory transmission is found to be GABAergic, which is demonstrated by the use of GABA antagonists, uptake inhibitors, and double-labeling experiments showing that Cr-Aint neurons are GABA-immunoreactive. The Cr-Aint neurons organize three different pathways in the prey capture network, which provide positive feedback necessary for sustaining prolonged spike activity. The first pathway includes electrical coupling and slow chemical transmission from the Cr-Aint neurons to all other neurons in the network. The second feedback is based on excitatory reciprocal connections between contralateral interneurons. Recurrent excitation via the contralateral cell can sustain prolonged interneuron firing, which then drives the activity of all other cells in the network. The third positive feedback is represented by prominent afterdepolarizing potentials after individual spikes in the Cr-Aint neurons. Afterdepolarizations apparently represent recurrent GABAergic excitatory inputs. It is suggested here that these afterdepolarizing potentials are produced by GABAergic excitatory autapses.  (+info)

Actions of a pair of identified cerebral-buccal interneurons (CBI-8/9) in Aplysia that contain the peptide myomodulin. (8/3683)

A combination of biocytin back-fills of the cerebral-buccal connectives and immunocytochemistry of the cerebral ganglion demonstrated that of the 13 bilateral pairs of cerebral-buccal interneurons in the cerebral ganglion, a subpopulation of 3 are immunopositive for the peptide myomodulin. The present paper describes the properties of two of these cells, which we have termed CBI-8 and CBI-9. CBI-8 and CBI-9 were found to be dye coupled and electrically coupled. The cells have virtually identical properties, and consequently we consider them to be "twin" pairs and refer to them as CBI-8/9. CBI-8/9 were identified by electrophysiological criteria and then labeled with dye. Labeled cells were found to be immunopositive for myomodulin, and, using high pressure liquid chromatography, the cells were shown to contain authentic myomodulin. CBI-8/9 were found to receive synaptic input after mechanical stimulation of the tentacles. They also received excitatory input from C-PR, a neuron involved in neck lengthening, and received a slow inhibitory input from CC5, a cell involved in neck shortening, suggesting that CBI-8/9 may be active during forward movements of the head or buccal mass. Firing of CBI-8 or CBI-9 resulted in the activation of a relatively small number of buccal neurons as evidenced by extracellular recordings from buccal nerves. Firing also produced local movements of the buccal mass, in particular a strong contraction of the I7 muscle, which mediates radula opening. CBI-8/9 were found to produce a slow depolarization and rhythmic activity of B48, the motor neuron for the I7 muscle. The data provide continuing evidence that the small population of cerebral buccal interneurons is composed of neurons that are highly diverse in their functional roles. CBI-8/9 may function as a type of premotor neuron, or perhaps as a peptidergic modulatory neuron, the functions of which are dependent on the coactivity of other neurons.  (+info)