Stratum corneum protein mobility as evaluated by a spin label maleimide derivative. (73/2086)

The molecular dynamics in the vicinity of sulfhydryl groups of stratum corneum (SC) proteins has been studied by electron paramagnetic resonance (EPR) spectroscopy of maleimide spin labels covalently bound to the proteins. The total amount of bound maleimide was around 4 nmol per mg of SC. We have interpreted the coexistence of two spectral components in the EPR spectra by a two-state model with a fraction of label hydrogen bonded to proteins and another fraction exposed to the aqueous environment. We showed that the relative populations among these two states, determined by spectral simulation, are in thermodynamic equilibrium. The calculated energetic gain for the nitroxide to form hydrogen bond with SC proteins rather than to be dissolved in the buffer was approximately 12 kcal/mol in the temperature range of 2-30 degrees C and approximately 5 kcal/mol in the range of 30-86 degrees C. Temperature profiles of other EPR parameters related to the rotational diffusion of the probe also showed changes in the temperature interval of 26-42 degrees C, suggesting alterations in the vibration modes of SC proteins which are sensitive to higher motional freedom above 26-42 degrees C. We also compared samples of intact and lipid-depleted SC and we found that the delipidization process does not alter significantly the backbone mobility in the SH group regions, but the data suggest that the protein cavity is more open in the case of the delipidized samples. These results contribute to the understanding of the protein participation in the barrier function of SC, and can be useful to improve the spectral analysis of site-directed spin labeling, particularly for a more quantitative description of the dynamic modes of the nitroxide side chains.  (+info)

Retinal stem cells in the adult mammalian eye. (74/2086)

The mature mammalian retina is thought to lack regenerative capacity. Here, we report the identification of a stem cell in the adult mouse eye, which represents a possible substrate for retinal regeneration. Single pigmented ciliary margin cells clonally proliferate in vitro to form sphere colonies of cells that can differentiate into retinal-specific cell types, including rod photoreceptors, bipolar neurons, and Muller glia. Adult retinal stem cells are localized to the pigmented ciliary margin and not to the central and peripheral retinal pigmented epithelium, indicating that these cells may be homologous to those found in the eye germinal zone of other nonmammalian vertebrates.  (+info)

A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. (75/2086)

Juvenile-onset cataracts are distinguished from congenital cataracts by the initial clarity of the lens at birth and the gradual development of lens opacity in the second and third decades of life. Genomewide linkage analysis in a multigenerational pedigree, segregating for autosomal dominant juvenile-onset cataracts, identified a locus in chromosome region 3q21.2-q22.3. Because of the proximity of the gene coding for lens beaded filament structural protein-2 (BFSP2) to this locus, we screened for mutations in the coding sequence of BFSP2. We observed a unique C-->T transition, one that was not observed in 200 normal chromosomes. We predicted that this led to a nonconservative R287W substitution in exon 4 that cosegregated with cataracts. This mutation alters an evolutionarily conserved arginine residue in the central rod domain of the intermediate filament. On consideration of the proposed function of BFSP2 in the lens cytoskeleton, it is likely that this alteration is the cause of cataracts in the members of the family we studied. This is the first example of a mutation in a noncrystallin structural gene that leads to a juvenile-onset, progressive cataract.  (+info)

Decreased deiminated keratin K1 in psoriatic hyperproliferative epidermis. (76/2086)

Citrulline-containing proteins, mainly originating from keratin K1 and formed by enzymatic deimination of arginine residues, have been identified in the cornified layers of human epidermis. We analyzed the localization and nature of the deiminated proteins in psoriatic epidermis. Immunostaining based on chemical modification of citrulline residues showed that the normal and psoriatic uninvolved epidermis contained deiminated proteins diffusely in the cornified cell layer, whereas the involved epidermis had no detectable or markedly reduced levels of deiminated proteins. Immunolabeling with polyclonal antibodies against a synthetic citrulline-containing peptide corresponding to a deiminated sequence of mouse K1 also suggested markedly decreased deiminated K1 in psoriatic involved lesions. Keratin analyses indicated that deiminated K1 present in normal and psoriatic uninvolved epidermis was not detected in the psoriatic involved epidermis. Double staining with a monoclonal antibody, 34betaB4, and the polyclonal antibodies demonstrated that epidermis with low suprabasal keratin expression was negative for deiminated K1. In contrast, intralesional acrosyringia showing decreased suprabasal keratin immunoreactivity like that of the surrounding psoriatic epidermis showed strong deiminated K1 staining. This suggests that abnormal keratin deimination is restricted to the psoriatic hyperproliferative epidermis, without affecting sweat ductal epithelia.  (+info)

Autosomal-dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene BFSP2. (77/2086)

Congenital cataracts are a common major abnormality of the eye that frequently cause blindness in infants. At least one-third of all cases are familial; autosomal-dominant congenital cataract appears to be the most-common familial form in the Western world. Elsewhere, in family ADCC-3, we mapped an autosomal-dominant cataract gene to chromosome 3q21-q22, near the gene that encodes a lens-specific beaded filament protein gene, BFSP2. By sequencing the coding regions of BFSP2, we found that a deletion mutation, DeltaE233, is associated with cataracts in this family. This is the first report of an inherited cataract that is caused by a mutation in a cytoskeletal protein.  (+info)

Peripherin/rds influences membrane vesicle morphology. Implications for retinopathies. (78/2086)

Peripherin/rds is an integral membrane glycoprotein found in the rim regions of vertebrate photoreceptor cell discs. Natural mutations of the encoding gene result in degenerative retinal disorders, such as retinitis pigmentosa. The retinal degeneration slow (rds) phenotype, observed in mice, is considered to be an appropriate model for peripherin/rds-mediated retinitis pigmentosa. Associated abnormalities in the outer segment of photoreceptor cells have implicated peripherin/rds in some aspect of disc morphology, yet it remains unclear whether such morphological effects are the cause or the result of this condition. Here we present the first direct evidence to support a role for peripherin/rds in maintaining the flattened vesicle morphology characteristic of photoreceptor outer segments. In vitro expression yields a 36-kDa immunoreactive species, which is inserted into membranes and undergoes N-glycosylation, inter- and intramolecular disulfide bonding, and dimerization. Electron microscopy reveals that peripherin/rds flattens microsomal vesicles. This effect appears to be dependent on disulfide bond formation but not N-glycosylation. The inability of two pathogenic peripherin/rds mutants (P216L and C165Y) to flatten membrane vesicles implicates such mutations as the primary cause of the retinal degeneration observed in retinitis pigmentosa.  (+info)

The spatial and temporal expression of outer segment proteins during development of Macaca monkey cones. (79/2086)

PURPOSE: To characterize the spatial and temporal expression of key structural and phototransduction cascade proteins in the monkey cone outer segment (OS). METHODS: Retinas from Macaca monkeys from ages fetal day (Fd) 89 through adulthood were double labeled using immunofluorescence for short (S) or long/medium (L/M) wavelength-sensitive cone opsin and either a structural protein (peripherin) or a phototransduction cascade protein (alpha-transducin [alpha-T], phosphodiesterase [PDE], or rhodopsin kinase [RK]). The spatial and temporal patterns of expression for each protein at each age were determined and graphed as a percentage of retinal coverage. RESULTS: In both cone types, opsins and phototransduction proteins appear first in the fovea and last at the retinal edge. Peripherin appears concomitantly with opsin in both S and L/M cones, but S cones express peripherin and opsin 1 to 3 weeks before neighboring L/M cones. Alpha-T, PDE, and RK are expressed together in the L/M cone OS shortly after L/M opsin appears. Phototransduction proteins are not expressed in S cones until 1 to 3 weeks after the appearance of S opsin and at the same time that neighboring cones are expressing both L/M opsin and phototransduction proteins. CONCLUSIONS: The concomitant appearance of opsin and peripherin strongly suggests roles in promoting the structural integrity of the developing OS. Phototransduction cascade proteins appear in the developing OS at the same time as one another, but after opsin. The significant lag between their expression and that of S cone opsin indicates that phototransduction proteins are not essential for OS formation, nor does opsin expression trigger their expression. The different temporal but similar spatial expression patterns of phototransduction proteins within S and L/M cones suggests that some local signal(s) coordinates their appearance.  (+info)

High-pressure freezing provides new information on human epidermis: simultaneous protein antigen and lamellar lipid structure preservation. Study on human epidermis by cryoimmobilization. (80/2086)

Current transmission electron microscopy techniques do not permit simultaneous visualization of skin ultrastructure and stratum corneum extracellular lipids. We developed a new procedure, which entails application of high-pressure freezing followed by freeze-substitution with acetone containing uranyl acetate, followed by low temperature embedding in HM20. Electrospray ionization mass spectrometry showed that the amount of lipids lost during preparation was minimal. The ultrastructure of cryoprocessed skin was compared with that of conventionally prepared skin samples. Cryoprocessing, but not conventional processing, enabled visualization of lipid stacks within epidermal lamellar bodies, as well as the extracellular lipid domains of the stratum corneum and the ultrastructure within keratinocytes. Anti-filaggrin immunocytochemistry also showed, e.g., excellent preservation of filaggrin on cryoprocessed samples. Additionally, the cytosol of keratinocytes appeared to be organized in "microdomain"-like areas. Finally, the stratum corneum appeared more compact with smaller intercellular spaces and hence tighter cell-cell interactions, after cryoprocessing, than after conventional tissue preparation for transmission electron microscopy. We conclude here that only cryoprocessing preserves skin in a close to native state.  (+info)