4-1BBL cooperates with B7-1 and B7-2 in converting a B cell lymphoma cell line into a long-lasting antitumor vaccine. (57/6774)

A20 is a B cell lymphoma that constitutively expresses the costimulatory molecule B7-2 yet grows readily as a tumor in syngeneic BALB/c mice. We have compared the tumorigenicity of A20 variants expressing either B7-1 (A20/B7-1) or B7-2 (A20/B7-2) with an A20 variant expressing B7-1 and B7-2 with 4-1BBL (A20/4-1BBL), a costimulatory member of the TNF family. Mice injected with tumors expressing the vector backbone (A20/CMV) or B7-1 developed tumors within 25 days of s.c. injection. In contrast, mice injected with A20/4-1BBL were tumor free for the 150-day follow-up period, while 25% of mice injected with A20/B7-2 developed tumors. Tumorigenicity experiments using nude mice indicated the requirement for T cells for variant rejection. Almost all mice that resisted the initial tumor challenge were resistant to further challenge with the parental tumor. Splenocytes from these mice showed high CTL lytic activity against the parental tumor, A20, as well as the syngeneic BALB/c lymphoma K46J, but showed background levels of lytic activity against the congenic SCID thymoma line ST-D2 or the allogeneic EL4 thymoma. In vitro blocking experiments with anti-B7-1 plus anti-B7-2 and/or soluble 4-1BB receptor showed B7-1, B7-2, and 4-1BBL all contributed to the CTL activity. Thus, the data show that neither B7-1 or B7-2 alone can confer full immunogenicity to the A20 lymphoma but that the addition of 4-1BBL results in a tumor that is highly immunogenic and can confer long-lasting protection against challenge with parental tumor in vivo.  (+info)

A novel role for the major histocompatibility complex class II transactivator CIITA in the repression of IL-4 production. (58/6774)

Class II transactivator (CIITA) is known as a coactivator for MHC class II gene expression in antigen-presenting cells. Surprisingly, when CIITA-/- CD4 T cells were stimulated in the presence of IL-12, they produced not only IFNgamma but also high levels of IL-4. The IL-4 production is due to the accumulation of IL-4 gene transcripts in Th1 cells. This transcriptional control is observed in T cells differentiating to the Th1 but not Th2 lineage, consistent with induction of expression of the CIITA gene in T cells by IFNgamma. Thus, in addition to its role in transactivation of genes involved in antigen presentation, CIITA plays a critical role during the T cell differentiation by negatively regulating the IL-4 gene transcription.  (+info)

Insulin-like growth factor I synergizes with interleukin 4 for hematopoietic cell proliferation independent of insulin receptor substrate expression. (59/6774)

In the present study, we investigated the potential role of insulin-like growth factor I (IGF-I) receptor (IGF-IR) in cell proliferation by overexpressing it in 32D myeloid progenitor cells. The overexpression of IGF-IR caused the transfectants to proliferate in response to IGF-I in the absence of insulin receptor substrate (IRS) expression. The activation of overexpressed wild-type IGF-IR, but not that of an ATP-binding mutant of IGF-IR, resulted in the increased tyrosine phosphorylation of several intracellular proteins, including SHC, Src homology 2-containing inositol-5-phosphatase, protein kinase C-delta, and Erk2. Grb2 association with SHC and mitogen-activated protein kinase (MAPK) activity was also enhanced in response to IGF-I stimulation. Interestingly, the stimulation of the IGF-IR transfectants with interleukin 4 (IL-4) also resulted in strong mitogenesis independent of IRS expression. Moreover, IGF-I and/or IL-4 induced long-term cell growth of the IGF-IR transfectants. IL-4 was able to synergize with IGF-I for DNA synthesis, even in the parental 32D cells and a pro-B-cell line, Baf3, indicating the physiological importance of the two growth factors in hematopoietic cell proliferation. IL-4 stimulation of the IGF-IR transfectants resulted in enhanced tyrosine phosphorylation of SHC, Erk2, and signal transducer and activator of transcription 6 (STAT6) proteins. Both IL-4 and IGF-I were able to induce c-myc early response gene expression, and this expression was maximal in the presence of both factors. Finally, we demonstrated that a MAPK kinase inhibitor was able to suppress mitogenesis of the IGF-IR transfectants in response to IGF-I and/or IL-4. Together, our results suggest that IL-4 synergizes with IGF-I for hematopoietic cell proliferation, likely through cross talk between SHC/Grb2/MAPK and STAT6 pathways and through c-myc gene up-regulation.  (+info)

Roles of TH1 and TH2 cytokines in a murine model of allergic dermatitis. (60/6774)

Skin lesions in atopic dermatitis (AD) are characterized by hypertrophy of the dermis and epidermis, infiltration by T cells and eosinophils, and expression of the cytokines IL-4, IL-5, and IFN-gamma. The role of these cytokines in the pathogenesis of AD is not known. We took advantage of a recently described murine model of AD elicited by epicutaneous sensitization with ovalbumin (OVA) (1) and of the availability of mice with targeted deletions of the IL-4, IL-5, and IFN-gamma cytokine genes to assess the role of these cytokines in this model.OVA-sensitized skin from IL-5(-/-) mice had no detectable eosinophils and exhibited decreased epidermal and dermal thickening. Sensitized skin from IL-4(-/-) mice displayed normal thickening of the skin layers but had a drastic reduction in eosinophils and a significant increase in infiltrating T cells. These findings were associated with a reduction in eotaxin mRNA and an increase in mRNA for the T-cell chemokines macrophage inflammatory protein-2 (MIP-2), MIP-1beta, and RANTES. Sensitized skin from IFN-gamma-/- mice was characterized by reduced dermal thickening. These results suggest that both the TH2 cytokines IL-4 and IL-5 and the TH1 cytokine IFN-gamma play important roles in the inflammation and hypertrophy of the skin in AD.  (+info)

Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. (61/6774)

To investigate the potential involvement of T helper (Th)2-type responses in murine models of intestinal inflammation, we used trinitrobenzene sulfonic acid (TNBS)-hapten to induce inflammatory bowel disease in situations where Th1-type responses with interferon (IFN)-gamma synthesis are either diminished or do not occur. Intracolonic administration of TNBS to either normal (IFN-gamma+/+) or Th1-deficient IFN-gamma knockout (IFN-gamma-/-) BALB/c mice resulted in significant colitis. In IFN-gamma-/- mice, crypt inflammation was more severe than in IFN-gamma+/+ mice and was accompanied by hypertrophy of colonic patches with a lymphoepithelium containing M cells and distinct B and T cell zones resembling Peyer's patches. Hapten-specific, colonic patch T cells from both mouse groups exhibited a Th2 phenotype with interleukin (IL)-4 and IL-5 production. TNBS colitis in normal mice treated with anti-IL-4 antibodies or in IL-4(-/-) mice was less severe than in either IFN-gamma+/+ or IFN-gamma-/- mice. Our findings now show that the Th2-type responses in TNBS colitis are associated with colonic patch enlargement and inflammation of the mucosal layer and may represent a model for ulcerative colitis.  (+info)

Microbial epitopes act as altered peptide ligands to prevent experimental autoimmune encephalomyelitis. (62/6774)

Molecular mimicry refers to structural homologies between a self-protein and a microbial protein. A major epitope of myelin basic protein (MBP), p87-99 (VHFFKNIVTPRTP), induces experimental autoimmune encephalomyelitis (EAE). VHFFK contains the major residues for binding of this self-molecule to T cell receptor (TCR) and to the major histocompatibility complex. Peptides from papilloma virus strains containing the motif VHFFK induce EAE. A peptide from human papilloma virus type 40 (HPV 40) containing VHFFR, and one from HPV 32 containing VHFFH, prevented EAE. A sequence from Bacillus subtilis (RKVVTDFFKNIPQRI) also prevented EAE. T cell lines, producing IL-4 and specific for these microbial peptides, suppressed EAE. Thus, microbial peptides, differing from the core motif of the self-antigen, MBPp87-99, function as altered peptide ligands, and behave as TCR antagonists, in the modulation of autoimmune disease.  (+info)

Leishmanin skin test lymphoproliferative responses and cytokine production after symptomatic or asymptomatic Leishmania major infection in Tunisia. (63/6774)

Resistance to Leishmania parasite infection requires the development of a cellular immune response that activates macrophage leishmanicidal activity. In this study we have investigated the lymphoproliferative responses and in vitro cytokine production of peripheral blood mononuclear cells (PBMC) from individuals living in an endemic area for L. major infection in Tunisia. The results were compared with the DTH reaction of the leishmanin skin test (LST). Sixty-seven individuals were included in the study: 22 persons (age range 9-60 years) who developed, 2 years before the present study, a parasitologically confirmed localized cutaneous leishmaniasis (LCL) that healed spontaneously, and 45 individuals (age range 18-20 years) born and living in the same area, with no previous history of LCL. LST was positive (skin induration > or = 5 mm) in 20/22 cured cases of LCL and in 75% of healthy individuals without history of LCL. LST+ individuals expressed vigorous Leishmania-specific lymphoproliferative responses associated with in vitro production of interferon-gamma (IFN-gamma) but not IL-4. Interestingly, IL-10 was detected in parallel with the highest levels of IFN-gamma in PBMC supernatants from 3/20 cured LCL and 8/25 individuals without history of LCL. Our results showed a 98% concordance between the DTH reaction assessed by LST and the in vitro proliferative assay induced by soluble leishmanial antigens. Moreover, proliferative assays as well as cytokine analysis did not show any significant difference of the immune memory to parasite antigens developed by patients who had overt cutaneous leishmaniasis and those who had apparently asymptomatic infection.  (+info)

Increased bcl-2 expression in lymphocytes and its association with hepatocellular damage in patients with autoimmune hepatitis. (64/6774)

The proto-oncogene product bcl-2 is known to inhibit apoptotic cell death, and its dysregulation might play a critical role in the development of autoimmune disease. To elucidate the role of bcl-2 in autoimmune hepatitis (AIH), its expression in peripheral blood mononuclear cells (PBMC) and in liver-infiltrating lymphocytes (LIL) was investigated. Increased bcl-2 expression in PBMC was found in AIH patients compared with that in chronic hepatitis C (CHC) patients and in healthy controls. The level of bcl-2 expression significantly correlated with serum ALT level. Further analysis showed that CD4+ T cells are enriched in bcl-2-expressing PBMC. To characterize the Th1/Th2 profile of bcl-2-expressing CD4+ T cells, intracellular interferon-gamma (IFN-gamma) and IL-4 were analysed. The results revealed that most of the bcl-2-expressing cells were found to be IFN-gamma-secreting Th1 cells. In three patients for whom their clinical courses could be followed, bcl-2 expression was decreased after the initiation of immunosuppressive therapy with corticosteroids. However, the level of IFN-gamma + cells was not altered. Immunohistochemical analysis also showed that large amounts of bcl-2+ cells were observed in periportal area in the liver. In conclusion, bcl-2-expressing cells were shown to be increased in peripheral blood and liver in AIH and the bcl-2 product was expressed mainly in CD4+ Th1-type cells, suggesting that these cells might promote the cellular immune response and contribute to the development of hepatitis and hepatocellular damage in AIH.  (+info)