Jun kinase phosphorylates and regulates the DNA binding activity of an octamer binding protein, T-cell factor beta1. (1/9598)

POU domain proteins have been implicated as key regulators during development and lymphocyte activation. The POU domain protein T-cell factor beta1 (TCFbeta1), which binds octamer and octamer-related sequences, is a potent transactivator. In this study, we showed that TCFbeta1 is phosphorylated following activation via the T-cell receptor or by stress-induced signals. Phosphorylation of TCFbeta1 occurred predominantly at serine and threonine residues. Signals which upregulate Jun kinase (JNK)/stress-activated protein kinase activity also lead to association of JNK with TCFbeta1. JNK associates with the activation domain of TCFbeta1 and phosphorylates its DNA binding domain. The phosphorylation of recombinant TCFbeta1 by recombinant JNK enhances the ability of TCFbeta1 to bind to a consensus octamer motif. Consistent with this conclusion, TCFbeta1 upregulates reporter gene transcription in an activation- and JNK-dependent manner. In addition, inhibition of JNK activity by catalytically inactive MEKK (in which methionine was substituted for the lysine at position 432) also inhibits the ability of TCFbeta1 to drive inducible transcription from the interleukin-2 promoter. These results suggest that stress-induced signals and T-cell activation induce JNK, which then acts on multiple cis sequences by modulating distinct transactivators like c-Jun and TCFbeta1. This demonstrates a coupling between the JNK activation pathway and POU domain proteins and implicates TCFbeta1 as a physiological target in the JNK signal transduction pathway leading to coordinated biological responses.  (+info)

Requirement for transcription factor NFAT in interleukin-2 expression. (2/9598)

The nuclear factor of activated T cells (NFAT) transcription factor is implicated in expression of the cytokine interleukin-2 (IL-2). Binding sites for NFAT are located in the IL-2 promoter. Furthermore, pharmacological studies demonstrate that the drug cyclosporin A inhibits both NFAT activation and IL-2 expression. However, targeted disruption of the NFAT1 and NFAT2 genes in mice does not cause decreased IL-2 secretion. The role of NFAT in IL-2 gene expression is therefore unclear. Here we report the construction of a dominant-negative NFAT mutant (dnNFAT) that selectively inhibits NFAT-mediated gene expression. The inhibitory effect of dnNFAT is mediated by suppression of activation-induced nuclear translocation of NFAT. Expression of dnNFAT in cultured T cells caused inhibition of IL-2 promoter activity and decreased expression of IL-2 protein. Similarly, expression of dnNFAT in transgenic mice also caused decreased IL-2 gene expression. These data demonstrate that NFAT is a critical component of the signaling pathway that regulates IL-2 expression.  (+info)

A technique for dual determination of cytotoxic and helper lymphocyte precursor frequency by a miniaturized dye release method. (3/9598)

Helper (HTLPf) and cytotoxic (CTLPf) lymphocyte precursor frequency assays are increasingly used in bone marrow stem cell and organ transplant compatibility testing. Current techniques require large cell numbers and radioisotopes. To improve the technique, we developed a miniaturized fluorescent read-out combined HTLPf/CTLPf limiting dilution assay. The assay requires only 5 x 10(6) stimulators, 2 x 10(6) responders and 0.24 x 10(6) target cells in Terasaki plates (40 microl/well). For the HTLPf, culture supernatants from each well were assayed for IL-2 production. The IL-2-dependent proliferation of the mouse 9.12 cell line was detected by a semi-automated fluorescent dye technique. After addition of rhIL-2 (recombinant human IL-2) on days 3 and 7, CTLPs were detected on day 10 by measuring the lysis of dye-labeled targets. Results were comparable to standard radioisotope-based techniques. The assay had a coefficient of variation of approximately 30%. The assay detected helper CD4 cells, pure cytotoxic CD8, helper CD8 cells and helper/cytotoxic CD8 cells. Discrimination was demonstrated between HLA-matched related and non-related pairs. The ease of testing and small cell numbers required should facilitate further evaluation of HTLPf and CTLPf for compatibility testing in unrelated donor transplantation and monitoring immune responses following adoptive transfer of lymphocytes.  (+info)

Distinct clinical and laboratory activity of two recombinant interleukin-2 preparations. (4/9598)

Interleukin-2 (IL-2) is a potent lymphokine that activates natural killer cells, T cells, and other cells of the immune system. Several distinct recombinant human IL-2 preparations have shown antitumor activity, particularly for renal cell cancer and melanoma. Somewhat distinct immune and clinical effects have been noted when different IL-2 preparations have been tested clinically; however, the regimens and doses used were not identical. To compare these more directly, we have evaluated two clinical recombinant IL-2 preparations in vitro and in vivo using similar regimens and similar IUs of IL-2. We used the Food and Drug Administration-approved, commercially available Chiron IL-2 and the Hoffmann LaRoche (HLR) IL-2 supplied by the National Cancer Institute. Using equivalent IUs of IL-2, we noted quantitative differences in vitro and in vivo in the IL-2 activity of these two preparations. In patients receiving comparable IUs of the two preparations, HLR IL-2 induced the release of more soluble IL-2 receptor alpha into the serum than Chiron IL-2. In addition, more toxicities were noted in patients receiving 1.5 x 10(6) IU of HLR IL-2 than were seen in patients treated with 1.5 x 10(6) or even 4.5 x 10(6) IU of Chiron IL-2. These toxicities included fever, nausea and vomiting, and hepatic toxicity. In vitro proliferative assays using IL-2-dependent human and murine cell lines indicated that the IU of HLR IL-2 was more effective than Chiron IL-2 at inducing tritiated thymidine incorporation. Using flow cytometry, we also found quantitative differences in the ability of these two preparations to bind to IL-2 receptors. These findings indicate that approximately 3-6 IU of Chiron IL-2 are required to induce the same biological effect as 1 IU of HLR IL-2.  (+info)

Presentation of renal tumor antigens by human dendritic cells activates tumor-infiltrating lymphocytes against autologous tumor: implications for live kidney cancer vaccines. (5/9598)

The clinical impact of dendritic cells (DCs) in the treatment of human cancer depends on their unique role as the most potent antigen-presenting cells that are capable of priming an antitumor T-cell response. Here, we demonstrate that functional DCs can be generated from peripheral blood of patients with metastatic renal cell carcinoma (RCC) by culture of monocytes/macrophages (CD14+) in autologous serum containing medium (RPMI) in the presence of granulocyte macrophage colony-stimulating factor and interleukin (IL) 4. For testing the capability of RCC-antigen uptake and processing, we loaded these DCs with autologous tumor lysate (TuLy) using liposomes, after which cytometric analysis of the DCs revealed a markedly increased expression of HLA class I antigen and a persistent high expression of class II. The immunogenicity of DC-TuLy was further tested in cultures of renal tumor infiltrating lymphocytes (TILs) cultured in low-dose IL-2 (20 Biologic Response Modifier Program units/ml). A synergistic effect of DC-TuLy and IL-2 in stimulating a T cell-dependent immune response was demonstrated by: (a) the increase of growth expansion of TILs (9.4-14.3-fold; day 21); (b) the up-regulation of the CD3+ CD56- TcR+ (both CD4+ and CD8+) cell population; (c) the augmentation of T cell-restricted autologous tumor lysis; and (d) the enhancement of IFN-gamma, tumor necrosis factor-alpha, granulocyte macrophage colony-stimulating factor, and IL-6 mRNA expression by TILs. Taken together, these data implicate that DC-TuLy can activate immunosuppressed TIL via an induction of enhanced antitumor CTL responses associated with production of Thl cells. This indicates a potential role of DC-TuLy vaccines for induction of active immunity in patients with advanced RCC.  (+info)

Characterization of CD4+ CD8alphaalpha+ and CD4-CD8alphaalpha+ intestinal intraepithelial lymphocytes in rats. (6/9598)

Intestinal intraepithelial lymphocytes (i-IEL) of aged rats comprise CD4+CD8alphaalpha+ and CD4-CD8alphaalpha+ T cells expressing TCR alphabeta. In the present study, we compared characteristics between CD4+CD8alphaalpha+ and CD4-CD8alphaalpha+ i-IEL, which were purified by a cell sorter from the i-IEL of 6-month-old Lewis rats. Most of the CD4+CD8alphaalpha+ i-IEL were of the CD44(hlgh) phenotype, while CD4-CD8alphabeta+ i-IEL were CD44(low). Vbeta usage in the CD4-CD8alphaalpha+ i-IEL was much diversified, while CD4+CD8alphaalpha+ i-IEL showed a skewed Vbeta repertoire. The CD4+CD8alphaalpha+ i-IEL but not the CD4-CD8alphaalpha+ i-IEL proliferated in response to syngeneic spleen cells, which was partially inhibited by addition of anti-MHC class I mAb. The CD4+CD8alphaalpha+ i-IEL produced IFN-gamma and IL-2 but no IL-4 or transforming growth factor (TGF)-beta in response to syngeneic spleen cells, while CD4-CD8alphaalpha+ i-IEL produced abundant levels of TGF-beta but no IL-2, IFN-gamma or IL-4. CD4+CD8alphaalpha+ i-IEL proliferated in response to exogenous IL-2 but not to IL-15, while CD4-CD8alphaalpha+ i-IEL could respond to IL-15 as well as IL-2. These results suggest that a significant fraction of CD4+CD8alphaalpha+ i-IEL belongs to Th1-type T cells capable of responding to self-MHC class I, while CD4-CD8alphaalpha+ i-IEL are a unique population with a diversified Vbeta repertoire that respond to IL-15 in rats.  (+info)

Systemic administration of interleukin 2 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines. (7/9598)

We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of nontoxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-gamma production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.  (+info)

Interferon gamma expressed by a recombinant respiratory syncytial virus attenuates virus replication in mice without compromising immunogenicity. (8/9598)

Interferon gamma (IFN-gamma) has pleiotropic biological effects, including intrinsic antiviral activity as well as stimulation and regulation of immune responses. An infectious recombinant human respiratory syncytial virus (rRSV/mIFN-gamma) was constructed that encodes murine (m) IFN-gamma as a separate gene inserted into the G-F intergenic region. Cultured cells infected with rRSV/mIFN-gamma secreted 22 microg mIFN-gamma per 10(6) cells. The replication of rRSV/mIFN-gamma, but not that of a control chimeric rRSV containing the chloramphenicol acetyl transferase (CAT) gene as an additional gene, was 63- and 20-fold lower than that of wild-type (wt) RSV in the upper and lower respiratory tract, respectively, of mice. Thus, the attenuation of rRSV/mIFN-gamma in vivo could be attributed to the activity of mIFN-gamma and not to the presence of the additional gene per se. The mice were completely resistant to subsequent challenge with wt RSV. Despite its growth restriction, infection of mice with rRSV/mIFN-gamma induced a level of RSV-specific antibodies that, on day 56, was comparable to or greater than that induced by infection with wt RSV. Mice infected with rRSV/mIFN-gamma developed a high level of IFN-gamma mRNA and an increased amount of interleukin 12 p40 mRNA in their lungs, whereas other cytokine mRNAs tested were unchanged compared with those induced by wt RSV. Because attenuation of RSV typically is accompanied by a reduction in immunogenicity, expression of IFN-gamma by an rRSV represents a method of attenuation in which immunogenicity can be maintained rather than be reduced.  (+info)