Systemic administration of rIL-12 synergistically enhances the therapeutic effect of a TNF gene-transduced cancer vaccine. (1/4931)

Interleukin-12 (IL-12) is a potent antitumor cytokine, which induces and enhances the activity of natural killer (NK) cells, lymphokine activated killer (LAK) cells and cytotoxic T lymphocytes (CTL). IL-12 also stimulates IFN-gamma production from both T cells and NK cells. In this study, we transfected methylcholanthrene-induced fibrosarcoma (MCA-D) with TNF gene and investigated the therapeutic effect of TNF gene-transduced cancer vaccine and whether the vaccination effect is enhanced by systemic administration of recombinant IL-12 (rIL-12), in a murine model. TNF gene-transduced cancer vaccine or systemic administration of rIL-12 showed slight or moderate inhibition of pre-established tumor. However, simultaneous application of the vaccine and rIL-12 resulted in complete eradication. The cytotoxicity of CTL against parental tumor cells was enhanced with the combination of the vaccine and rIL-12, and IFN-gamma production from spleen cells also increased synergistically. Our findings show that synergistic enhancement of CTL activity and IFN-gamma production could play an important role in the antitumor effect of combination therapy using TNF gene-transduced cancer vaccine and rIL-12.  (+info)

Reciprocal control of T helper cell and dendritic cell differentiation. (2/4931)

It is not known whether subsets of dendritic cells provide different cytokine microenvironments that determine the differentiation of either type-1 T helper (TH1) or TH2 cells. Human monocyte (pDC1)-derived dendritic cells (DC1) were found to induce TH1 differentiation, whereas dendritic cells (DC2) derived from CD4+CD3-CD11c- plasmacytoid cells (pDC2) induced TH2 differentiation by use of a mechanism unaffected by interleukin-4 (IL-4) or IL-12. The TH2 cytokine IL-4 enhanced DC1 maturation and killed pDC2, an effect potentiated by IL-10 but blocked by CD40 ligand and interferon-gamma. Thus, a negative feedback loop from the mature T helper cells may selectively inhibit prolonged TH1 or TH2 responses by regulating survival of the appropriate dendritic cell subset.  (+info)

Enhanced Th1 and dampened Th2 responses synergize to inhibit acute granulomatous and fibrotic responses in murine schistosomiasis mansoni. (3/4931)

In murine schistosomiasis mansoni, CD4(+) Th1 and Th2 cells participate in the ovum-induced granulomatous inflammation. Previous studies showed that the interleukin-12 (IL-12)-induced Th1 response strongly suppressed the Th2-cell-mediated pulmonary granuloma development in naive or primed mice. However, liver granulomas were only moderately suppressed in egg-vaccinated, recombinant IL-12 (rIL-12)-treated infected mice. The present study shows that repeated rIL-12 injections given during early granuloma development at 5 to 7 weeks after infection prolonged the Th1 phase and resulted in gamma interferon-mediated suppression of liver granulomas. The timing is crucial: if given at 6 to 8 weeks, during the Th2-dominated phase of florid granuloma growth, the treatment is ineffective. Daily injections of rIL-12 given between 5 and 7.5 weeks during the period of granuloma growth achieved a somewhat-stronger diminution in granuloma growth with less deposition of collagen but caused 60% mortality and liver pathology. In contrast, combined treatment with rIL-12 and anti-IL-4-anti-IL-10 monoclonal antibody (MAb) injections given during the Th2 phase strongly inhibited liver granuloma growth without mortality. The diminished inflammatory response was accompanied by less deposition of collagen in the liver. Moreover, neutralization of endogenous IL-12 by anti-IL-12 MAbs effectively decreased the early Th1 phase (between 5 and 6 weeks after infection) but not the developing Th2 phase (5 to 7 weeks) of granuloma development. These studies indicate that the granulomatous response in infected mice can be manipulated by utilizing the Th1-Th2-subset antagonism with potential salutary results in the amelioration of fibrous pathology.  (+info)

Interleukin-12 is synthesized by mesangial cells and stimulates platelet-activating factor synthesis, cytoskeletal reorganization, and cell shape change. (4/4931)

Preliminary studies indicate the involvement of interleukin (IL)-12 in experimental renal pathology. In the present study, we evaluated whether cultured glomerular mesangial cells are able to produce IL-12 and whether IL-12 may regulate some of their functions, including the cytoskeletal reorganization, the change in cell shape, and the production of platelet-activating factor (PAF). The results obtained indicate that pro-inflammatory stimuli, such as tumor necrosis factor-alpha and bacterial polysaccharides, induce the expression of IL-12 mRNA and the synthesis of the protein by cultured mesangial cells. Moreover, cultured mesangial cells were shown to bind IL-12 and to express the human low-affinity IL-12 beta1-chain receptor. When challenged with IL-12, mesangial cells produced PAF in a dose- and time-dependent manner and superoxide anions. No production of tumor necrosis factor-alpha and IL-8 was observed. Moreover, we demonstrate that IL-12 induced a delayed and sustained shape change of mesangial cells that reached its maximum between 90 and 120 minutes of incubation. The changes in cell shape occurred concomitantly with cytoskeletal rearrangements and may be consistent with cell contraction. As IL-12-dependent shape change of mesangial cells was concomitant with the synthesis of PAF, which is known to promote mesangial cell contraction, we investigated the role of PAF using two chemically different PAF receptor antagonists. Both antagonists inhibited almost completely the cell shape change induced by IL-12, whereas they were ineffective on angiotensin-II-induced cell shape change. In conclusion, our results suggest that mesangial cells can either produce IL-12 or be stimulated by this cytokine to synthesize PAF and to undergo shape changes compatible with cell contraction.  (+info)

Downregulation of interleukin-12 (IL-12) responsiveness in human T cells by transforming growth factor-beta: relationship with IL-12 signaling. (5/4931)

Interleukin-12 (IL-12) is a cytokine that plays a central role in the control of cell-mediated immunity. We have previously shown that transforming growth factor-beta1 (TGF-beta) inhibitory effects on human primary allogeneic cytotoxicity and proliferative responses interfere with IL-12 pathway. The present study was undertaken to further elucidate the biochemical basis of the functional interaction between these two cytokines and to define the site of TGF-beta action on the signaling pathway activated by IL-12. Our data indicate that TGF-beta induced an inhibition of interferon-gamma (IFN-gamma) production without affecting the IL-12Rbeta1 and IL-12Rbeta2 subunits mRNA expression by activated T cells. We further show that TGF-beta has a significant inhibitory effect on the early signal transduction events following interaction of IL-12 with its receptor on activated T cells, resulting in the inhibition of both JAK2 and Tyk2 phosphorylation. In addition, TGF-beta was found to significantly inhibit IL-12-induced phosphorylation of the STAT4 transcription factor. Electrophoretic mobility shift assay indicated that TGF-beta induced a decrease in IL-12-induced STAT4 DNA binding activity in T lymphocytes. This study suggests that TGF-beta influences IL-12 responsiveness at least in part by inhibiting early signaling events essential to gene induction in IL-12-activated T cells.  (+info)

Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. (6/4931)

Interleukin-12 (IL-12) inhibits angiogenesis in vivo by inducing interferon-gamma (IFN-gamma) and other downstream mediators. Here, we report that neutralization of natural killer (NK) cell function with antibodies to either asialo GM1 or NK 1.1 reversed IL-12 inhibition of basic fibroblast growth factor (bFGF)-induced angiogenesis in athymic mice. By immunohistochemistry, those sites where bFGF-induced neovascularization was inhibited by IL-12 displayed accumulation of NK cells and the presence of IP-10-positive cells. Based on expression of the cytolytic mediators perforin and granzyme B, the NK cells were locally activated. Experimental Burkitt lymphomas treated locally with IL-12 displayed tumor tissue necrosis, vascular damage, and NK-cell infiltration surrounding small vessels. After activation in vitro with IL-12, NK cells from nude mice became strongly cytotoxic for primary cultures of syngeneic aortic endothelial cells. Cytotoxicity was neutralized by antibodies to IFN-gamma. These results document that NK cells are required mediators of angiogenesis inhibition by IL-12, and provide evidence that NK-cell cytotoxicity of endothelial cells is a potential mechanism by which IL-12 can suppress neovascularization.  (+info)

Interleukin-12 induces expression of interferon regulatory factor-1 via signal transducer and activator of transcription-4 in human T helper type 1 cells. (7/4931)

IRF-1-deficient mice show a striking defect in the development of T helper 1 (Th1) cells. In the present report, we investigate the expression of IRF-1 during differentiation of human T helper cells. No significant differences of IRF-1 mRNA expression were found in established Th1 and Th2 cells; however, interleukin 12 (IL-12) induced a strong up-regulation of IRF-1 transcripts in Th1 but not in Th2 cells. We demonstrate that IL-12-induced up-regulation of IRF-1 is mediated by signal transducer and activator of transcription-4, which binds to the interferon (IFN)-gamma-activated sequence present in the promoter of the IRF-1 gene. Strong IL-12-dependent activation of a reporter gene construct containing the IRF-1 IFN-gamma-activated sequence element provides further evidence for the key role of signal transducer and activator of transcription-4 in the IL-12-induced up-regulation of IRF-1 transcripts in T cells. IRF-1 expression was strongly induced after stimulation of naive CD4(+) T cells via the T cell receptor, irrespective of the cytokines present at priming, indicating that this transcription factor does not play a major role in initiating a Th1-specific transcriptional cascade in differentiating helper T cells. However, our finding that IRF-1 is a target gene of IL-12 suggests that some of the IL-12-induced effector functions of Th1 cells may be mediated by IRF-1.  (+info)

The vitronectin receptor and its associated CD47 molecule mediates proinflammatory cytokine synthesis in human monocytes by interaction with soluble CD23. (8/4931)

The vitronectin receptor, alphavbeta3 integrin, plays an important role in tumor cell invasion, angiogenesis, and phagocytosis of apoptotic cells. CD47, a member of the multispan transmembrane receptor family, physically and functionally associates with vitronectin receptor (VnR). Although vitronectin (Vn) is not a ligand of CD47, anti-CD47 and beta3 mAbs suppress Vn, but not fibronectin (Fn) binding and function. Here, we show that anti-CD47, anti-beta3 mAb and Vn, but not Fn, inhibit sCD23-mediated proinflammatory function (TNF-alpha, IL-12, and IFN-gamma release). Surprisingly, anti-CD47 and beta3 mAbs do not block sCD23 binding to alphav+beta3+ T cell lines, whereas Vn and an alphav mAb (clone AMF7) do inhibit sCD23 binding, suggesting the VnR complex may be a functional receptor for sCD23. sCD23 directly binds alphav+beta3+/CD47(-) cell lines, but coexpression of CD47 increases binding. Moreover, sCD23 binds purified alphav protein and a single human alphav chain CHO transfectant. We conclude that the VnR and its associated CD47 molecule may function as a novel receptor for sCD23 to mediate its proinflammatory activity and, as such, may be involved in the inflammatory process of the immune response.  (+info)