Gas exchange during separate diaphragm and intercostal muscle breathing. (49/190)

In patients with diaphragm paralysis, ventilation to the basal lung zones is reduced, whereas in patients with paralysis of the rib cage muscles, ventilation to the upper lung zones in reduced. Inspiration produced by either rib cage muscle or diaphragm contraction alone, therefore, may result in mismatching of ventilation and perfusion and in gas-exchange impairment. To test this hypothesis, we assessed gas exchange in 11 anesthetized dogs during ventilation produced by either diaphragm or intercostal muscle contraction alone. Diaphragm activation was achieved by phrenic nerve stimulation. Intercostal muscle activation was accomplished by electrical stimulation by using electrodes positioned epidurally at the T(2) spinal cord level. Stimulation parameters were adjusted to provide a constant tidal volume and inspiratory flow rate. During diaphragm (D) and intercostal muscle breathing (IC), mean arterial Po(2) was 97.1 +/- 2.1 and 88.1 +/- 2.7 Torr, respectively (P < 0.01). Arterial Pco(2) was lower during D than during IC (32.6 +/- 1.4 and 36.6 +/- 1.8 Torr, respectively; P < 0.05). During IC, oxygen consumption was also higher than that during D (0.13 +/- 0.01 and 0.09 +/- 0.01 l/min, respectively; P < 0.05). The alveolar-arterial oxygen difference was 11.3 +/- 1.9 and 7.7 +/- 1.0 Torr (P < 0.01) during IC and D, respectively. These results indicate that diaphragm breathing is significantly more efficient than intercostal muscle breathing. However, despite marked differences in the pattern of inspiratory muscle contraction, the distribution of ventilation remains well matched to pulmonary perfusion resulting in preservation of normal gas exchange.  (+info)

Relationship between parasternal and external intercostal muscle length and load compensatory responses in dogs. (50/190)

1. The effects of tracheal occlusion on peak parasternal (PA) and external intercostal (EI) (3rd interspace) EMG activities were examined at different end-expiratory lung volumes both above and below functional reserve capacity (FCR) in anaesthetized, vagotomized and spontaneously breathing dogs. 2. Parasternal (PA) and external intercostal (EI) muscle lengths were monitored in situ. The difference in peak EMG activity between free and occluded breaths (test breaths) was related to the coincident peak change in intercostal muscle length (delta L) for each muscle, respectively. 3. At FRC, tracheal occlusion resulted in compensatory augmentation of peak EI, but little change in peak PA EMG activities. At lung volumes below FRC, airway occlusion resulted in augmentation of both PA and EI activities. Responses to airway occlusion at lung volumes above FRC were variable. The magnitude and duration of these changes in EMG, however, could be linearly related to the value of delta L. With delta L = 0, there was no change in peak EI or PA EMG; for values of delta L less than 0, there was attenuation of EI and PA EMG; for delta L greater than 0, there was enhancement of EI and PA EMG activation. 4. The magnitude of the changes in EMG activity in response to tracheal occlusion was more prominent for the EI muscle compared to the PA, the latter of which are known to have much fewer muscle spindles than EI muscle. 5. Our results suggest that a difference in end-inspiratory muscle length between the control and occluded breaths is a stimulus for the intercostal response to applied loads implicating muscle spindles as the predominant receptor moderating these responses. We hypothesize that when delta L = 0, no change in EMG occurs since the spindles sense no change in muscle length. When delta L less than 0 (i.e. peak muscle length during the occluded breath is shorter than control) muscle spindles would be disengaged, resulting in a disfacilitation of EMG activity. Where delta L greater than 0 (i.e. peak muscle length during the occluded breath is longer than control), muscle spindles are stimulated, resulting in enhancement of EMG activity. 6. Additional doses of Nembutal (20 mg), which produced significant changes in breathing pattern, did not affect the magnitude of the load compensatory responses.  (+info)

PECAM-1 interacts with nitric oxide synthase in human endothelial cells: implication for flow-induced nitric oxide synthase activation. (51/190)

OBJECTIVE: We have previously shown that fluid shear stress (FSS) triggers endothelial nitric oxide synthase (eNOS) activity in endothelial cells and that the mechanotransduction mechanisms responsible for activation discriminate between rapid changes in FSS and FSS per se. We hypothesized that the particular sublocalization of eNOS at the cell-cell junction would render it responsive to activation by FSS temporal gradients. METHODS AND RESULTS: In human umbilical vein endothelial cells (HUVECs), immunofluorescence revealed strong eNOS membrane staining at the cell-cell junction colocalizing with platelet/endothelial cell adhesion molecule-1 (PECAM-1). In PECAM-1-/- mouse aorta, eNOS junctional localization seen in the wild type was absent. Similarly, junctional staining was lost in wild-type aorta near intercostal artery branches. eNOS/PECAM-1 association in HUVECs was confirmed by coimmunoprecipitation. When HUVECs were subjected to a 0.5s impulse of 12 dynes/cm2, a transient disruption of the eNOS/PECAM-1 complex was observed, accompanied by an increase in eNOS activity (cGMP production). Ramped flow did not trigger complex dissociation or an increase in cGMP production. In a cell-free system, a direct inhibition of eNOS activity by PECAM-1 is shown. CONCLUSIONS: These results suggest that eNOS is complexed with PECAM-1 at the cell-cell junction and is likely involved in the modulation of eNOS activity by FSS temporal gradients but not by FSS itself.  (+info)

Clinical significance of electrocardiography recordings from a higher intercostal space for detection of the brugada sign. (52/190)

BACKGROUND: The significance of higher intercostal space electrocardiography (HICS ECG) for the detection of the Brugada sign was investigated. METHODS AND RESULTS: The subjects consisted of 113 cases (108 males, 5 females; mean age, 57+/-17 years) with incomplete right bundle branch block type QRS morphology and ST-segment elevation (>0.10 mV) in the right precordial leads. Obvious structural heart disease was not observed in any of the subjects. The V(1-3) leads of the standard 12-lead ECG and the HICS ECG were recorded in the supine position, and the amplitude of the terminal portion of the QRS (J-point) and ST-segment (80 ms from the J-point) were measured. In the HICS ECG, there was an increase in the area in which the Brugada sign was detectable (47 leads to 66 leads), and in cases with the Brugada sign, the amplitude of the J-point increased. CONCLUSIONS: The HICS ECG may be helpful for the detection of the Brugada sign.  (+info)

Interaction between the canine diaphragm and intercostal muscles in lung expansion. (53/190)

Changes in intrathoracic pressure produced by the various inspiratory intercostals are essentially additive, but the interaction between these muscles and the diaphragm remains uncertain. In the present study, this interaction was assessed by measuring the changes in airway opening (DeltaPao) or transpulmonary pressure (DeltaPtp) in vagotomized, phrenicotomized dogs during spontaneous inspiration (isolated intercostal contraction), during isolated rectangular or ramp stimulation of the peripheral ends of the transected C(5) phrenic nerve roots (isolated diaphragm contraction), and during spontaneous inspiration with superimposed phrenic nerve stimulation (combined diaphragm-intercostal contraction). With the endotracheal tube occluded at functional residual capacity, DeltaPao during combined diaphragm-intercostal contraction was nearly equal to the sum of the DeltaPao produced by the two muscle groups contracting individually. However, when the endotracheal tube was kept open, DeltaPtp during combined contraction was 123% of the sum of the individual DeltaPtp (P < 0.001). The increase in lung volume during combined contraction was also 109% of the sum of the individual volume increases (P < 0.02). Abdominal pressure during combined contraction was invariably lower than during isolated diaphragm contraction. It is concluded, therefore, that the canine diaphragm and intercostal muscles act synergistically during lung expansion and that this synergism is primarily due to the fact that the intercostal muscles reduce shortening of the diaphragm. When the lung is maintained at functional residual capacity, however, the synergism is obscured because the greater stiffness of the rib cage during diaphragm contraction enhances the DeltaPao produced by the isolated diaphragm and reduces the DeltaPao produced by the intercostal muscles.  (+info)

Abnormal development of the intercostal muscles and the rib cage in Myf5-/- embryos leads to pulmonary hypoplasia. (54/190)

The aim of our study was to investigate the importance of pulmonary distension and fetal breathing-like movements executed by the contractile activity of the intercostal respiratory muscles for proper lung growth and maturation. Lung development in Myf5-/- embryos, lacking the rib cage and functional intercostal musculature, was compared with wild-type controls at embryonic days 14.5, 16.5, and 18.5. Our data revealed that Myf5-/- embryos suffered from pulmonary hypoplasia in part due to the decreased number of proliferating lung cells and in part due to the increased number of terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) -positive cells. In addition, the proximal-to-distal expression gradient of thyroid transcription factor-1 observed in wild-type embryos was not maintained in Myf5-/- embryos. The number of lung cells expressing platelet-derived growth factor-BB, its receptor and insulin growth factor-I was significantly decreased in the hypoplastic lung. By contrast, no difference in the expression pattern of surfactant associated proteins or Clara cells marker was detected between wild-type and Myf5-/- embryos. Collectively, our data suggest that the mechanochemical signal transduction pathway used in vitro is also effective in vivo influencing lung growth but not lung cell maturation and resulting in lung hypoplasia. These data affirm the role of fetal breathing-like movements in lung organogenesis.  (+info)

Respiratory action of the intercostal muscles. (55/190)

The mechanical advantages of the external and internal intercostals depend partly on the orientation of the muscle but mostly on interspace number and the position of the muscle within each interspace. Thus the external intercostals in the dorsal portion of the rostral interspaces have a large inspiratory mechanical advantage, but this advantage decreases ventrally and caudally such that in the ventral portion of the caudal interspaces, it is reversed into an expiratory mechanical advantage. The internal interosseous intercostals in the caudal interspaces also have a large expiratory mechanical advantage, but this advantage decreases cranially and, for the upper interspaces, ventrally as well. The intercartilaginous portion of the internal intercostals (the so-called parasternal intercostals), therefore, has an inspiratory mechanical advantage, whereas the triangularis sterni has a large expiratory mechanical advantage. These rostrocaudal gradients result from the nonuniform coupling between rib displacement and lung expansion, and the dorsoventral gradients result from the three-dimensional configuration of the rib cage. Such topographic differences in mechanical advantage imply that the functions of the muscles during breathing are largely determined by the topographic distributions of neural drive. The distributions of inspiratory and expiratory activity among the muscles are strikingly similar to the distributions of inspiratory and expiratory mechanical advantages, respectively. As a result, the external intercostals and the parasternal intercostals have an inspiratory function during breathing, whereas the internal interosseous intercostals and the triangularis sterni have an expiratory function.  (+info)

Congenital oculo-bulbar palsy. (56/190)

A girl developed progressive weakness of bulbar and ocular muscles starting before the age of two years. Electromyography revealed a widespread subclinical myopathy. An intercostal muscle biopsy showed complex abnormalities including occasional neurofilamentous accumulations and honeycomb-like membranous material in terminal axons. Endplates were small and some secondary synaptic clefts were abnormally deep. Acetylcholine receptors extended unusually deeply into the clefts of the junctional folds. Muscle fibres showed subsarcolemmal vacuolation at some places. This form of congenital oculo-bulbar palsy does not appear to have been described previously.  (+info)