Thrombospondin-1 induces tyrosine phosphorylation of adherens junction proteins and regulates an endothelial paracellular pathway. (17/2154)

Thrombospondin-1 (TSP) induces endothelial cell (EC) actin reorganization and focal adhesion disassembly and influences multiple EC functions. To determine whether TSP might regulate EC-EC interactions, we studied the effect of exogenous TSP on the movement of albumin across postconfluent EC monolayers. TSP increased transendothelial albumin flux in a dose-dependent manner at concentrations >/=1 microg/ml (2.2 nM). Increases in albumin flux were observed as early as 1 h after exposure to 30 microg/ml (71 nM) TSP. Inhibition of tyrosine kinases with herbimycin A or genistein protected against the TSP-induced barrier dysfunction by >80% and >50%, respectively. TSP-exposed monolayers exhibited actin reorganization and intercellular gap formation, whereas pretreatment with herbimycin A protected against this effect. Increased staining of phosphotyrosine-containing proteins was observed in plaque-like structures and at the intercellular boundaries of TSP-treated cells. In the presence of protein tyrosine phosphatase inhibition, TSP induced dose- and time-dependent increments in levels of phosphotyrosine-containing proteins; these TSP dose and time requirements were compatible with those defined for EC barrier dysfunction. Phosphoproteins that were identified include the adherens junction proteins focal adhesion kinase, paxillin, gamma-catenin, and p120(Cas). These combined data indicate that TSP can modulate endothelial barrier function, in part, through tyrosine phosphorylation of EC proteins.  (+info)

Membrane specializations of dentritic spines and glia in the weaver mouse cerebellum: a freeze-fracture study. (18/2154)

Electron microscopy of thin-sectioned and freeze-fractured preparations of the cerebellum of the weaver mouse indicates that the dendritic spines are morphologically identical to those of their normal littermates. The weaver dendritic spines have been characterized as "unattached" since the synaptic input from the parallel fibers is absent (8-10). The entire region around the dendritic spines is taken up by astrocytic processes in the weaver. The outer fracture face of a normal dendritic spine contains aggregations of 10-nm wide particles in the immediate postsynaptic region. Similar particle aggregations occur in the unattached spines of the weaver. Freeze-fracture preparations reveal rectilinear arrays of particles, having a 7-nm center-to-center distance in the glial membranes. Rectilinear arrays are apparently distributed throughout the astrocyte membrane.  (+info)

In vivo induction of tight junction proliferation in rat liver. (19/2154)

The chronic administration of phalloidin induces an extensive development of tight junctions between rat hepatocytes. The junctional strands lose their predominantly parallel orientation with respect to the canalicular lumen and extend abluminally in irregular patterns which cover large membrane areas at considerable distance from the bile canaliculi. These changes indicate both proliferation and provide further evidence that these junctions are not permanent differentiations of the cell membrane.  (+info)

Functional significance of the variations in the geometrical organization of tight junction networks. (20/2154)

Using freeze-fracture techniques, we have examined the morpholog of tight junction networks found along the length of the alimentary tract of Xenopus laevis before and after metamorphosis. We have developed the hypothesis, based on these observations, that the geometrical organization of the network determined by the stress-induced shape changes normally experienced by the cells linked by the network. Consistent with this theory, tight junctions can be classified into two distinct types of network organization which differ in their response normal and experimentally induced stress conditions: (a) loosely interconnected networks which can stretch or compress extensively under tension, thereby adapting to stress changes in the tissue; and (b) evenly cross-linked networks which retain their basic morphology under normal stress conditions. The absorptive cells of the large intestine as well as the mucous cells of the gastrointestine or stomach are sealed by the first, flexible type of tight junction. The second type of junctional organization, the evenly cross-connected network, is found between absorptive cells of the small intestine and ciliated cells of the esophagus, and reflects in its constant morphology the relative stability of the apical region of both of these cell types. Networks intermediate between these two types arise when a cell which would normally form a lossely interconnected network borders a cell which tends to form a more evenly cross-linked network, as is found in the esophagus where ciliated and goblet cells adjoin. Despite the change in the animal's diet during metamorphosis from herbivorous to carnivorous, the basic gemetrical organization of the networks associated with each tissue of the alimentary tract remains the same.  (+info)

Segmental differentiations of cell junctions in the vascular endothelium. Arteries and veins. (21/2154)

A systematic survey of endothelial junctions in elastic (aorta) and muscular (mesenteric) arteries and in medium (renal and mesenteric) and large (cava inferior) size veins has been carried out in the rat using freeze-cleaved preparations. The arterial endothelium is provided with a complex of occluding and communicating junctions (gap junctions) comparable to, though less elaborate than, that described in arterioles. The particles of the occluding junctions behave like "single unit" particles and have the tendency to remain on B faces upon membrane cleavage. In the venous endothelium the junctions take the form of long occluding junctions with few associated communicating junctions (maculae communicantes). As in arterial endothelium, the junctional particles appear preferentially on B faces in cleaved preparations. These structures, although continuous over long distances, are interrupted focally by areas in which the junctional elements are similar to those found in venules: the ridges and grooves are short, discontinuous, randomly distributed along the general line of cell contact, and often particle-free. In muscular arteries two unusual types of junctions are encountered. Both are disposed in loops over short distances along the perimeter of the cell. One type appears to be a strectched-out version of the usual combination of occluding and communcating junctions of the arterial endothelium (this type is also occasionally encountered in the venous endothelium). The other type is reminiscent of the septate junctions found in the epithelia of invertebrates but the apparent similarity remains to be checked by further work.  (+info)

Use of Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. (22/2154)

Previous work in our laboratory has indicated that biliary excretion of a substrate in sandwich-cultured hepatocytes can be quantitated by measurement of substrate accumulation in the presence and absence of extracellular Ca2+. The present study was designed to examine the effects of Ca2+ on taurocholate accumulation and tight junction integrity in cultured hepatocytes. Kinetic modeling was used to characterize taurocholate disposition in the hepatocyte monolayers in the presence and absence of extracellular Ca2+. The accumulation of taurocholate in freshly isolated hepatocytes, which lack an intact canalicular network, was the same in the presence and absence of extracellular Ca2+. Electron microscopy studies showed that Ca2+ depletion increased the permeability of the tight junctions to ruthenium red, demonstrating that tight junctions were the major diffusional barrier between the canalicular lumen and the extracellular space. Cell morphology and substrate accumulation studies in the monolayers indicated that Ca2+ depletion disrupted the tight junctions in 1 to 2 min. The integrity of the disrupted tight junctions was not re-established completely after reincubation in the presence of Ca2+ for 1 h. The accumulation of taurocholate was described best by a two-compartment model (cytosol and bile) with Michaelis-Menten kinetics for both uptake and biliary excretion. In summary, Ca2+ depletion does not alter hepatocyte transport properties of taurocholate. Ca2+ modulation may be a useful approach to study biliary excretion of substrates in sandwich-cultured hepatocytes.  (+info)

Contacts between pigmented retina epithelial cells in culture. (23/2154)

The behaviour of primary cultures of dissociated embryonic chick pigmented retina epithelial (PRE) cells has been investigated. Isolated PRE cells have a mean speed of locomotion of 7-16 mum/h. Collisions between the cells normally result in the development of stable contacts between the cells involved. This leads to a gradual reduction in the number of isolated cells and an increase in the number of cells incorporated into islands. Ultrastructural observations of islands of cells after 24 h in culture show that junctional complexes are present between the cells. These complexes consist of 2 components: (a) an apically situated region of focal tight junctions and/or gap junctions, and (b) a more ventrally located zonula adhaerens with associated cytoplasmic filaments forming a band running completely around the periphery of each cell. The intermembrane gap in the region of the zonula is 6-0-12-0 nm. The junctional complexes become more differentiated with time and after 48 h in culture consist of an extensive region of tight junctions and/or gap junctions and a more specialized zonula adhaerens. It is suggested that the development of junctional complexes may be responsible for the stable contacts that the cells display in culture.  (+info)

Effect of thiol-oxidation of glutathione with diamide on corneal endothelial function, junctional complexes, and microfilaments. (24/2154)

Intracellular-reduced glutathione (GSH) was removed by thiol-oxidation with diamide during in vitro perfusion of the corneal endothelium. By 15 min the normal mosaic-like pattern of the endothelial cells was disrupted by serpentine-like lines of cell separation at the cell juntions. After 45 min of perfusion, infividual clusters of cells formed cup-shaped islands. The resultant exposure of Descemet's membrane to the perfusion solution resulted in corneal swelling. Transmission electron microscopy revealed that the endothelial cells separated at the apical junctions and that the microfilaments in the apical cytoplasm of cells formed dense bands, whereas the other subcellular organelles were normal in appearance. The change in cellular shape may be due to loss of cellular adhesion which results in the condensation of the microfilaments or contraction of the microfilaments. The addition of glucose to the perfusate prevented the diamide effect, and the diamide effect could be reversed upon removal and perfusion of a glutathione bicarbonate Ringer's solution. These results suggest that the ratio of reduced to oxidized glutathione in the endothelial cells plays a role in the maintenance of the endothelial cell barrier function.  (+info)