Use of a novel fibronectin receptor for liver infiltration by a mouse lymphoma cell line RL-male1. (25/5403)

The mechanism whereby some lymphomas invade liver extensively has not been fully investigated. There is no basement membrane under the sinusoidal endothelium of the liver, and hepatocytes produce fibronectin (FN); therefore, adhesion to this FN may be particularly important for liver infiltration by lymphoma cells. A mouse lymphoma cell line, RL-male1, adhered to FN. However, this cell line did not express classical FN receptors such as very late antigen (VLA)-4 and VLA-5, as estimated by immunofluorescent staining. We have generated monoclonal antibodies (mAbs) that inhibit adhesion of RL-male1 cells to FN. Western blot and immunoprecipitation analyses showed that the new mAbs recognize a protein with an approximate molecular weight of 55,000 (p55). This antigenic protein was highly purified by immunoprecipitation and processed for microsequencing. From NH2-terminal sequence results, the p55 antigen was not identical to known FN receptors. Radioisotope-labeled RL-male1 cells, when injected i.v. into mice, rapidly infiltrated the liver (30-35% of injected cells), as measured by a gamma counter. Intravenous injection of the new mAbs partially (20%) blocked the infiltration of i.v.-injected lymphoma cells into the liver, whereas control rat IgG and an anti-CD11a mAb did not. These results demonstrate that the mouse lymphoma cell line RL-male1 nses a novel FN receptor for liver infiltration.  (+info)

IL-5 and eosinophils are essential for the development of airway hyperresponsiveness following acute respiratory syncytial virus infection. (26/5403)

Viral respiratory infections can cause bronchial hyperresponsiveness and exacerbate asthma. In mice, respiratory syncytial virus (RSV) infection, which induces an immune response dominated by IFN-gamma, results in airway hyperresponsiveness (AHR) and eosinophil influx into the airways, both of which are prevented by pretreatment with anti-IL-5 Ab. To delineate the role of IL-5, IL-4, and IFN-gamma in the development of RSV-induced AHR and lung eosinophilia, we tested the ability of mice deficient in each of these cytokines to develop these symptoms of RSV infection. Mice deficient in either IL-5, IL-4, or IFN-gamma were administered infectious RSV intranasally, and 6 days later, airway responsiveness to inhaled methacholine was assessed by barometric body plethysmography, and numbers of lung eosinophils and production of IFN-gamma, IL-4, and IL-5 by mononuclear cells from peribronchial lymph nodes were monitored. RSV infection resulted in airway eosinophilia and AHR in both IL-4- and IFN-gamma-deficient mice, but not in IL-5-deficient mice. Reconstitution of IL-5-deficient mice with IL-5 restored these responses and enhanced the responses in IL-4-deficient mice. Anti-VLA-4 (very late Ag-4) treatment prevented lung eosinophilia and AHR following RSV infection and IL-5 reconstitution. We conclude that in response to RSV, IL-5 is essential for the influx of eosinophils into the lung and that eosinophils in turn are critical for the development of AHR. IFN-gamma and IL-4 are not essential for these responses to RSV infection.  (+info)

Atherosclerotic aortic gangliosides enhance integrin-mediated platelet adhesion to collagen. (27/5403)

Gangliosides, sialic acid-containing glycosphingolipids, accumulate in atherosclerotic vessels. Their role in the pathogenesis of atherosclerosis is unknown. Gangliosides isolated from tumor cells promote collagen-stimulated platelet aggregation and ATP secretion and enhance platelet adhesion to immobilized collagen. These activities are all mediated by ganglioside effects on the platelet integrin collagen receptor alpha2beta1. Therefore, we hypothesized that gangliosides isolated from atherosclerotic plaques would enhance platelet adhesion to immobilized collagen, a major component of the subendothelial matrix of blood vessels. Furthermore, we questioned whether this effect of atherosclerotic gangliosides might play a role in the pathogenesis of atherosclerosis. To test this hypothesis, we isolated the gangliosides from postmortem aortas of patients with extensive atherosclerotic disease and examined their effects on platelet adhesion. Samples of aortic tissue taken from areas involved with atherosclerotic plaque demonstrated accumulation of gangliosides (64.9+/-6.5 nmol/g wet weight) compared with gangliosides isolated from control normal aortic tissue taken from children who died of noncardiac causes (NAGs; 21.1+/-6.4 nmol/g wet weight). Interestingly, samples of tissue taken from diseased aortas but from areas not involved with gross plaque formation also demonstrated ganglioside accumulation (47.6+/-12.8 nmol/g wet weight). Next, the activity of each of these gangliosides on platelet adhesion to immobilized type I collagen was studied. Atherosclerotic aortic gangliosides (AAGs) as well as those isolated from grossly unaffected areas of the same aorta (UAGs) both increased platelet adhesion compared with control NAGs (OD570, 0. 37+/-0.11 and 0.29+/-0.14 versus 0.16+/-0.07, respectively; P<0.01 and P<0.05, respectively). These OD570 values corresponded to 9x10(5), 8x10(4), and 6x10(3) platelets per well after preincubation with 5 micromol/L AAG, UAG, and NAG, respectively. Increased adhesion was observed after preincubation with as little as 0.5 micromol/L AAG, and maximal adhesion was seen at 2.5 micromol/L, with a plateau extending to the highest concentration tested, 10 micromol/L. The effect of AAGs on platelet adhesion to collagen was abrogated by incubation of treated platelets with F-17 anti-alpha2 monoclonal antibody (OD570, 0.13+/-0.02). Finally, the effects of the major individual gangliosides isolated from atherosclerotic tissues, GM3 and GD3, were tested. GM3 increased adhesion to collagen (OD570, 0.415+/-0.06) as did GD3 (0.31+/-0.08). Similar to that of AAGs, the effect of both molecules was blocked by F-17 (0. 09+/-0.04 and 0.13+/-0.06, respectively). These experiments demonstrate that accumulated atherosclerotic gangliosides promote platelet adhesion to collagen, the major component of the subendothelial matrix. Furthermore, this activity is mediated by an effect of the gangliosides on the collagen-binding integrin alpha2beta1. This activity may provide a mechanism for the development of platelet thrombi at sites where atherosclerotic gangliosides accumulate and help to explain the role of platelets in the process of atherosclerotic disease progression.  (+info)

Crystal structure of a heparin- and integrin-binding segment of human fibronectin. (28/5403)

The crystal structure of human fibronectin (FN) type III repeats 12-14 reveals the primary heparin-binding site, a clump of positively charged residues in FN13, and a putative minor site approximately 60 A away in FN14. The IDAPS motif implicated in integrin alpha4beta1 binding is at the FN13-14 junction, rendering the critical Asp184 inaccessible to integrin. Asp184 clamps the BC loop of FN14, whose sequence (PRARI) is reminiscent of the synergy sequence (PHSRN) of FN9. Mutagenesis studies prompted by this observation reveal that both arginines of the PRARI sequence are important for alpha4beta1 binding to FN12-14. The PRARI motif may represent a new class of integrin-binding sites. The spatial organization of the binding sites suggests that heparin and integrin may bind in concert.  (+info)

Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. (29/5403)

The assembly of focal adhesions and actin stress fibers by cells plated on fibronectin depends on adhesion-mediated signals involving both integrins and cell-surface heparan sulfate proteoglycans. These two cell-surface receptors interact with different domains of fibronectin. To attempt to identify the heparan sulfate proteoglycans involved, we used fibronectin-null (FN-/-) mouse fibroblasts to eliminate the contribution of endogenous fibronectin during the analysis. FN-/- fibroblasts plated on the cell-binding domain of fibronectin or on antibodies directed against mouse beta1 integrin chains attach but fail to spread and do not form focal adhesions or actin stress fibers. When such cells are treated with antibodies directed against the ectodomain of mouse syndecan-4, they spread fully and assemble focal adhesions and actin stress fibers indistinguishable from those seen in cells plated on intact fibronectin. These results identify syndecan-4 as a heparan sulfate proteoglycan involved in the assembly process. The antibody-stimulated assembly of focal adhesions and actin stress fibers in cells plated on the cell-binding domain of fibronectin can be blocked with C3 exotransferase, an inhibitor of the small GTP-binding protein Rho. Treatment of cells with lysophosphatidic acid, which activates Rho, results in full spreading and assembly of focal adhesions and actin stress fibers in fibroblasts plated on the cell-binding domain of fibronectin. We conclude that syndecan-4 and integrins can act cooperatively in generating signals for cell spreading and for the assembly of focal adhesions and actin stress fibers. We conclude further that these joint signals are regulated in a Rho-dependent manner.  (+info)

Lymphocyte function-associated antigen-1 binding residues in intercellular adhesion molecule-2 (ICAM-2) and the integrin binding surface in the ICAM subfamily. (30/5403)

The crystal structure of intercellular adhesion molecule-2 (ICAM-2) revealed significant differences in the presentation of the critical acidic residue important for integrin binding between I and non-I-domain integrin ligands. Based on this crystal structure, we mutagenized ICAM-2 to localize the binding site for the integrin lymphocyte function-associated antigen-1 (LFA-1). The integrin binding site runs diagonally across the GFC beta-sheet and includes residues on the CD edge of the beta-sandwich. The site is oblong and runs along a flat ridge on the upper half of domain 1, which is proposed to dock to a groove in the I domain of LFA-1, with the critical Glu-37 residue ligating the Mg2+ in the I domain. Previous mutagenesis of ICAM-1 and ICAM-3, interpreted in light of the recently determined ICAM-1 and ICAM-2 structures, suggests similar binding sites. By contrast, major differences are seen with vascular cell adhesion molecule-1 (VCAM-1), which binds alpha4 integrins that lack an I domain. The binding site on VCAM-1 includes the lower portion of domain 1 and the upper part of domain 2, whereas the LFA-1 binding site on ICAM is confined to the upper part of domain 1.  (+info)

The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. (31/5403)

Wound contraction is mediated by myofibroblasts, specialized fibroblasts that appear in large numbers as the wound matures and when resistance to contractile forces increases. We considered that the regulation of myofibroblast differentiation by wound-healing cytokines may be dependent on the resistance of the connective tissue matrix to deformation. We examined transforming growth factor-beta1 (TGF-beta1) induction of the putative fibroblast contractile marker, alpha-smooth muscle actin (alpha-SMA), and the regulation of this process by the compliance of collagen substrates. Cells were cultured in three different types of collagen gels with wide variations of mechanical compliance as assessed by deformation testing. The resistance to collagen gel deformation determined the levels of intracellular tension as shown by staining for actin stress fibers. For cells plated on thin films of collagen-coated plastic (ie, minimal compliance and maximal intracellular tension), TGF-beta1 (10 ng/ml; 6 days) increased alpha-SMA protein content by ninefold as detected by Western blots but did not affect beta-actin content. Western blots of cells in anchored collagen gels (moderate compliance and tension) also showed a TGF-beta1-induced increase of alpha-SMA content, but the effect was greatly reduced compared with collagen-coated plastic (<3-fold increase). In floating collagen gels (high compliance and low tension), there were only minimal differences of alpha-SMA protein. Northern analyses for alpha-SMA and beta-actin indicated that TGF-beta1 selectively increased mRNA for alpha-SMA similar to the reported protein levels. In pulse-chase experiments, [35S]methionine-labeled intracellular alpha-SMA decayed most rapidly in floating gels, less rapidly in anchored gels, and not at all in collagen plates after TGF-beta1 treatment. TGF-beta1 increased alpha2 and beta1 integrin content by 50% in cells on collagen plates, but the increase was less marked on anchored gels and was undetectable in floating gels. When intracellular tension on collagen substrates was reduced by preincubating cells with blocking antibodies to the alpha2 and beta1 integrin subunits, TGF-beta1 failed to increase alpha-SMA protein content in all three types of collagen matrices. These data indicate that TGF-beta1-induced increases of alpha-SMA content are dependent on the resistance of the substrate to deformation and that the generation of intracellular tension is a central determinant of contractile cytoskeletal gene expression.  (+info)

Integrin signal transduction in myeloid leukocytes. (32/5403)

Integrin-mediated adhesion serves as a powerful costimulus for neutrophil activation. Clustering of integrins at the leukocyte membrane by interaction with surface-bound ligands (extracellular matrix proteins or endothelial cell counter-receptors) leads to a number of signaling events that culminate in actin cytoskeletal rearrangement and neutrophil functional responses such as migration, degranulation, and respiratory burst. Although the signaling reactions elicited by integrin ligation are complex and the relative contribution of each pathway to neutrophil function is unclear, a large body of evidence suggests that activation of tyrosine kinases is a very proximal event in these signaling cascades. This review summarizes the role of adhesion in activating neutrophil functional properties and the contribution of leukocyte tyrosine kinases to regulation of integrin signaling in myeloid cells. Significant advances in our understanding of leukocyte integrin signaling have been afforded by studies using knockout mice lacking members of the Src-family of tyrosine kinases normally expressed in myeloid cells. These studies have demonstrated that these kinases (Hck, Fgr, and Lyn) are not required for myeloid cell development or for many of the functional properties of myeloid cells but are critical in controlling integrin-mediated signaling events. Absence of these kinases results in impaired adhesion-dependent neutrophil activation both in vivo and in vitro. These studies suggest that leukocyte-specific tyrosine kinases may be good therapeutic targets for controlling myeloid cell-dependent inflammatory disease.  (+info)