Modulation of the bursting properties of single mouse pancreatic beta-cells by artificial conductances. (17/30793)

Glucose triggers bursting activity in pancreatic islets, which mediates the Ca2+ uptake that triggers insulin secretion. Aside from the channel mechanism responsible for bursting, which remains unsettled, it is not clear whether bursting is an endogenous property of individual beta-cells or requires an electrically coupled islet. While many workers report stochastic firing or quasibursting in single cells, a few reports describe single-cell bursts much longer (minutes) than those of islets (15-60 s). We studied the behavior of single cells systematically to help resolve this issue. Perforated patch recordings were made from single mouse beta-cells or hamster insulinoma tumor cells in current clamp at 30-35 degrees C, using standard K+-rich pipette solution and external solutions containing 11.1 mM glucose. Dynamic clamp was used to apply artificial KATP and Ca2+ channel conductances to cells in current clamp to assess the role of Ca2+ and KATP channels in single cell firing. The electrical activity we observed in mouse beta-cells was heterogeneous, with three basic patterns encountered: 1) repetitive fast spiking; 2) fast spikes superimposed on brief (<5 s) plateaus; or 3) periodic plateaus of longer duration (10-20 s) with small spikes. Pattern 2 was most similar to islet bursting but was significantly faster. Burst plateaus lasting on the order of minutes were only observed when recordings were made from cell clusters. Adding gCa to cells increased the depolarizing drive of bursting and lengthened the plateaus, whereas adding gKATP hyperpolarized the cells and lengthened the silent phases. Adding gCa and gKATP together did not cancel out their individual effects but could induce robust bursts that resembled those of islets, and with increased period. These added currents had no slow components, indicating that the mechanisms of physiological bursting are likely to be endogenous to single beta-cells. It is unlikely that the fast bursting (class 2) was due to oscillations in gKATP because it persisted in 100 microM tolbutamide. The ability of small exogenous currents to modify beta-cell firing patterns supports the hypothesis that single cells contain the necessary mechanisms for bursting but often fail to exhibit this behavior because of heterogeneity of cell parameters.  (+info)

Inactivation of the winged helix transcription factor HNF3alpha affects glucose homeostasis and islet glucagon gene expression in vivo. (18/30793)

Mice homozygous for a null mutation in the winged helix transcription factor HNF3alpha showed severe postnatal growth retardation followed by death between P2 and P12. Homozygous mutant mice were hypoglycemic despite unchanged expression of HNF3 target genes involved in hepatic gluconeogenesis. Whereas insulin and corticosteroid levels were altered as expected, plasma glucagon was reduced markedly in the mutant animals despite the hypoglycemia that should be expected to increase glucagon levels. This correlated with a 70% reduction in pancreatic proglucagon gene expression. We also showed that HNF3alpha could bind to and transactivate the proglucagon gene promoter. These observations invoke a central role for HNF3alpha in the regulatory control of islet genes essential for glucose homeostasis in vivo.  (+info)

Influence of nitric oxide modulators on cholinergically stimulated hormone release from mouse islets. (19/30793)

1. We have investigated, with a combined in vitro and in vivo approach, the influence on insulin and glucagon release stimulated by the cholinergic, muscarinic agonist carbachol of different NO modulators, i.e. the nitric oxide synthase (NOS) inhibitors NG-nitro-L-arginine methyl ester (L-NAME), NG-monomethyl-L-arginine (L-NMMA) and 7-nitroindazole as well as the intracellular NO donor hydroxylamine. 2. At basal glucose (7 mM) carbachol dose-dependently stimulated insulin release from isolated islets with a half-maximal response at approximately 1 microM of the agonist. In the presence of 5 mM L-NAME (a concentration that did not influence basal insulin release) the insulin response was markedly increased along the whole dose-response curve and the threshold for carbachol stimulation was significantly lowered. 3. Carbachol-stimulated islets displayed an increased insulin release and a suppressed glucagon release in the presence of L-NAME, L-NMMA or 7-nitroindazole. Significant suppression of glucagon release (except for L-NAME) was achieved at lower concentrations (approximately 0.1-0.5 mM) of the NOS inhibitors than the potentiation of insulin release (1.0-5.0 mM). The intracellular NO donor hydroxylamine dose-dependently inhibited carbachol-induced insulin release but stimulated glucagon release only at a low concentration (3 microM). 4. In islets depolarized with 30 mM K+ in the presence of the KATP channel opener diazoxide, NOS inhibition by 5 mM L-NAME still markedly potentiated carbachol-induced insulin release (although less so than in normal islets) and suppressed glucagon release. 5. In vivo pretreatment of mice with L-NAME was followed by a markedly increased insulin release and a reduced glucagon release in response to an i.v. injection of carbachol. 6. The data suggest that NO is a negative modulator of insulin release but a positive modulator of glucagon release induced by cholinergic muscarinic stimulation. These effects were also evident in K+ depolarized islets and thus NO might exert a major influence on islet hormone secretion independently of membrane depolarization events.  (+info)

Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion. (20/30793)

1. The objectives of this study were (1) to investigate whether glucose ingestion during prolonged exercise reduces whole body muscle glycogen oxidation, (2) to determine the extent to which glucose disappearing from the plasma is oxidized during exercise with and without carbohydrate ingestion and (3) to obtain an estimate of gluconeogenesis. 2. After an overnight fast, six well-trained cyclists exercised on three occasions for 120 min on a bicycle ergometer at 50 % maximum velocity of O2 uptake and ingested either water (Fast), or a 4 % glucose solution (Lo-Glu) or a 22 % glucose solution (Hi-Glu) during exercise. 3. Dual tracer infusion of [U-13C]-glucose and [6,6-2H2]-glucose was given to measure the rate of appearance (Ra) of glucose, muscle glycogen oxidation, glucose carbon recycling, metabolic clearance rate (MCR) and non-oxidative disposal of glucose. 4. Glucose ingestion markedly increased total Ra especially with Hi-Glu. After 120 min Ra and rate of disappearance (Rd) of glucose were 51-52 micromol kg-1 min-1 during Fast, 73-74 micromol kg-1 min-1 during Lo-Glu and 117-119 micromol kg-1 min-1 during Hi-Glu. The percentage of Rd oxidized was between 96 and 100 % in all trials. 5. Glycogen oxidation during exercise was not reduced by glucose ingestion. The vast majority of glucose disappearing from the plasma is oxidized and MCR increased markedly with glucose ingestion. Glucose carbon recycling was minimal suggesting that gluconeogenesis in these conditions is negligible.  (+info)

Proliferative effects of cholecystokinin in GH3 pituitary cells mediated by CCK2 receptors and potentiated by insulin. (21/30793)

1. Proliferative effects of CCK peptides have been examined in rat anterior pituitary GH3 cells, which express CCK2 receptors. 2. CCK-8s, gastrin(1-17) and its glycine-extended precursor G(1-17)-Gly, previously reported to cause proliferation via putative novel sites on AR4-2J and Swiss 3T3 cells, elicited significant dose dependent increases of similar magnitude in [3H]thymidine incorporation over 3 days in serum-free medium of 39 +/- 10% (P < 0.01, n = 20), 37 +/- 8% (P < 0.01, n = 27) and 41 +/- 6% (P < 0.01, n = 36) respectively. 3. CCK-8s and gastrin potentially stimulated mitogenesis (EC50 values 0.12 nM and 3.0 nM respectively), whilst G-Gly displayed similar efficacy but markedly lower potency. L-365,260 consistently blocked each peptide. The CCK2 receptor affinity of G-Gly in GH3 cells was 1.09 microM (1.01;1.17, n = 6) and 5.53 microM (3.71;5.99, n = 4) in guinea-pig cortex. 4. 1 microM G-Gly weakly stimulated Ca2+ increase, eliciting a 104 +/- 21% increase over basal Ca2+ levels, and was blocked by 1 microM L-365,260 whilst CCK-8s (100 nM) produced a much larger Ca2+ response (331 +/- 14%). 5. Insulin dose dependently enhanced proliferative effects of CCK-8s with a maximal leftwards shift of the CCK-8s curve at 100 ng ml(-1) (17 nM) (EC50 decreased 500 fold, from 0.1 nM to 0.2 pM; P < 0.0001). 10 microg ml(-1) insulin was supramaximal reducing the EC50 to 5 pM (P = 0.027) whilst 1 ng ml(-1) insulin was ineffective. Insulin weakly displaced [125I]BHCCK binding to GH3 CCK2 receptors (IC50 3.6 microM). 6. Results are consistent with mediation of G-Gly effects via CCK2 receptors in GH3 cells and reinforce the role of CCK2 receptors in control of cell growth. Effects of insulin in enhancing CCK proliferative potency may suggest that CCK2 and insulin receptors converge on common intracellular targets and indicates that mitogenic stimuli are influenced by the combination of extracellular factors present.  (+info)

Acute troglitazone action in isolated perfused rat liver. (22/30793)

1. The thiazolidinedione compound, troglitazone, enhances insulin action and reduces plasma glucose concentrations when administered chronically to type 2 diabetic patients. 2. To analyse to what extent thiazolidinediones interfere with liver function, we examined the acute actions of troglitazone (0.61 and 3.15 microM) on hepatic glucose and lactate fluxes, bile secretion, and portal pressure under basal, insulin- and/or glucagon-stimulated conditions in isolated perfused rat livers. 3. During BSA-free perfusion, high dose troglitazone increased basal (P < 0.01), but inhibited glucagon-stimulated incremental glucose production by approximately 75% (10.0 +/- 2.5 vs control: 40.0 +/- 7.2 micromol g liver(-1), P < 0.01). In parallel, incremental lactate release rose approximately 6 fold (13.1 +/- 5.9 vs control: 2.2 +/- 0.8 mmol g liver(-1), P < 0.05), while bile secretion declined by approximately 67% [0.23 +/- 0.02 vs control: 0.70 +/- 0.05 mg g liver(-1) min(-1)), P < 0.001]. Low dose troglitazone infusion did not enhance the inhibitory effect of insulin on glucagon-stimulated glucose production, but rapidly increased lactate release (P < 0.0005) and portal venous pressure (+0.17 +/- 0.07 vs +0.54 +/- 0.07 cm buffer height, P < 0.0001). 4. These results indicate that troglitazone exerts both insulin-like and non-insulin-like hepatic effects, which are blunted by addition of albumin, possibly due to troglitazone binding.  (+info)

Tumour necrosis factor-alpha regulates expression of the CCAAT-enhancer-binding proteins (C/EBPs) alpha and beta and determines the occupation of the C/EBP site in the promoter of the insulin-responsive glucose-transporter gene in 3T3-L1 adipocytes. (23/30793)

We have demonstrated previously that treatment of 3T3-L1 adipocytes with tumour necrosis factor-alpha (TNF) results in a rapid (4 h) and significant (75-80%) reduction in the rate of transcription of the GLUT4 gene. Control of GLUT4 gene transcription has been suggested at least in part to reside with the CCAAT-enhancer-binding protein (C/EBP) family (alpha, beta and delta isoforms) of transcription factors. Using electrophoretic mobility shift assays, we have examined the ability of TNF to alter the occupation of the C/EBP site in the GLUT4 promoter. The data suggest that in fully differentiated adipocytes the C/EBP site is a ligand for predominantly alpha/alpha homodimers; however, after exposure to TNF, a shift in occupancy of the site occurs and the ligands become alpha/beta heterodimers and beta/beta homodimers. Partner selection in dimer formation appears to be controlled by selective translocation of the beta-isoform from the cytosol to the nucleus after exposure of the cells to TNF.  (+info)

Alloxan in vivo does not only exert deleterious effects on pancreatic B cells. (24/30793)

The aim of the experiment was to investigate the mechanism of harmful alloxan action in vivo. 75 mg/kg b.w. of this diabetogenic agent were administered to fasting rats. Two minutes later the animals were decapitated. It was observed that alloxan caused a distinct rise in blood insulin and glucose levels with a concomitant drop of free fatty acids. The amount of sulfhydryl groups in the liver of alloxan-treated rats was decreased and glutathione peroxidase activity was substantially higher. These results indicate that some changes observed in alloxan-induced diabetes can not only be the consequence of B cells damage by alloxan but may also be the result of its direct influence on other tissues. It was also observed that glucose given 20 min before alloxan injection only partially protected against the deleterious effects of alloxan.  (+info)