Role of high-voltage-activated calcium channels in glucose-regulated beta-cell calcium homeostasis and insulin release. (9/3468)

High-voltage-activated (HVA) calcium channels are known to be the primary source of calcium for glucose-stimulated insulin secretion. However, few studies have investigated how these channels can be regulated by chronically elevated levels of glucose. In the present study, we determined the level of expression of the four major HVA calcium channels (N-type, P/Q-type, L(C)-type, and L(D)-type) in rat pancreatic beta-cells. Using quantitative real-time PCR (QRT-PCR), we found the expression of all four HVA genes in rat insulinoma cells (INS-1) and in primary isolated rat islet cells. We then determined the role of each channel in insulin secretion by using channel-selective antagonists. Insulin secretion analysis revealed that N- and L-type channels are both involved in immediate glucose-induced insulin secretion. However, L-type was preferentially coupled to secretion at later time points. P/Q-type channels were not found to play a role in insulin secretion at any stage. It was also found that long-term exposure to elevated glucose increases basal calcium in these cells. Interestingly, chronically elevated glucose decreased the mRNA expression of the channels involved with insulin secretion and diminished the level of stimulated calcium influx in these cells. Using whole cell patch clamp, we found that N- and L-type channel currents increase gradually subsequent to lower intracellular calcium perfusion, suggesting that these channels may be regulated by glucose-induced changes in calcium.  (+info)

The selective recruitment of mRNA to the ER and an increase in initiation are important for glucose-stimulated proinsulin synthesis in pancreatic beta-cells. (10/3468)

Glucose acutely stimulates proinsulin synthesis in pancreatic beta-cells through a poorly understood post-transcriptional mechanism. In the present study, we demonstrate in pancreatic beta-cells that glucose stimulates the recruitment of ribosome-associated proinsulin mRNA, located in the cytoplasm, to the ER (endoplasmic reticulum), the site of proinsulin synthesis, and that this plays an important role in glucose-stimulated proinsulin synthesis. Interestingly, glucose has greater stimulatory effect on the recruitment of proinsulin mRNA to the ER compared with other mRNAs encoding secretory proteins. This, as far as we are aware, is the first example whereby mRNAs encoding secretory proteins are selectively recruited to the ER and provides a novel regulatory mechanism for secretory protein synthesis. Contrary to previous reports, and importantly in understanding the mechanism by which glucose stimulates proinsulin synthesis, we demonstrate that there is no large pool of 'free' proinsulin mRNA in the cytoplasm and that glucose does not increase the rate of de novo initiation on the proinsulin mRNA. However, we show that glucose does stimulate the rate of ribosome recruitment on to ribosome-associated proinsulin mRNA. In conclusion, our results provide evidence that the selective recruitment of proinsulin mRNA to the ER, together with increases in the rate of initiation are important mediators of glucose-stimulated proinsulin synthesis in pancreatic beta-cells.  (+info)

Adenine nucleotide regulation in pancreatic beta-cells: modeling of ATP/ADP-Ca2+ interactions. (11/3468)

Glucose metabolism stimulates insulin secretion in pancreatic beta-cells. A consequence of metabolism is an increase in the ratio of ATP to ADP ([ATP]/[ADP]) that contributes to depolarization of the plasma membrane via inhibition of ATP-sensitive K+ (K(ATP)) channels. The subsequent activation of calcium channels and increased intracellular calcium leads to insulin exocytosis. Here we evaluate new data and review the literature on nucleotide pool regulation to determine the utility and predictive value of a new mathematical model of ion and metabolic flux regulation in beta-cells. The model relates glucose consumption, nucleotide pool concentration, respiration, Ca2+ flux, and K(ATP) channel activity. The results support the hypothesis that beta-cells maintain a relatively high [ATP]/[ADP] value even in low glucose and that dramatically decreased free ADP with only modestly increased ATP follows from glucose metabolism. We suggest that the mechanism in beta-cells that leads to this result can simply involve keeping the total adenine nucleotide concentration unchanged during a glucose elevation if a high [ATP]/[ADP] ratio exits even at low glucose levels. Furthermore, modeling shows that independent glucose-induced oscillations of intracellular calcium can lead to slow oscillations in nucleotide concentrations, further predicting an influence of calcium flux on other metabolic oscillations. The results demonstrate the utility of comprehensive mathematical modeling in understanding the ramifications of potential defects in beta-cell function in diabetes.  (+info)

How noise and coupling induce bursting action potentials in pancreatic {beta}-cells. (12/3468)

Unlike isolated beta-cells, which usually produce continuous spikes or fast and irregular bursts, electrically coupled beta-cells are apt to exhibit robust bursting action potentials. We consider the noise induced by thermal fluctuations as well as that by channel-gating stochasticity and examine its effects on the action potential behavior of the beta-cell model. It is observed numerically that such noise in general helps single cells to produce a variety of electrical activities. In addition, we also probe coupling via gap junctions between neighboring cells, with heterogeneity induced by noise, to find that it enhances regular bursts.  (+info)

Toll-like receptor 3 and STAT-1 contribute to double-stranded RNA+ interferon-gamma-induced apoptosis in primary pancreatic beta-cells. (13/3468)

Viral infections and local production of cytokines probably contribute to the pathogenesis of Type 1 diabetes. The viral replicative intermediate double-stranded RNA (dsRNA, tested in the form of polyinosinic-polycytidylic acid, PIC), in combination with the cytokine interferon-gamma (IFN-gamma), triggers beta-cell apoptosis. We have previously observed by microarray analysis that PIC induces expression of several mRNAs encoding for genes downstream of Toll-like receptor 3 (TLR3) signaling pathway. In this report, we show that exposure of beta-cells to dsRNA in combination with IFN-alpha, -beta, or -gamma significantly increases apoptosis. Moreover, dsRNA induces TLR3 mRNA expression and activates NF-kappaB and the IFN-beta promoter in a TRIF-dependent manner. dsRNA also induces an early (1 h) and sustained increase in IFN-beta mRNA expression, and blocking IFN-beta with a specific antibody partially prevents PIC plus IFN-gamma-induced beta-cell death. On the other hand, dsRNA plus IFN-gamma does not induce apoptosis in INS-1E cells, and expression of TLR3 and type I IFNs mRNAs is not detected in these cells. Of note, disruption of the STAT-1 signaling pathway protects beta-cells against dsRNA plus IFN-gamma-induced beta-cell apoptosis. This study suggests that dsRNA plus IFN-gamma triggers beta-cell apoptosis by two complementary pathways, namely TLR3-TRIF-NF-kappaB and STAT-1.  (+info)

Macrophages in the murine pancreas and their involvement in fetal endocrine development in vitro. (14/3468)

Macrophages are a heterogeneous population of cells that belong to the mononuclear phagocyte system. They play an important role in tissue homeostasis and remodeling and are also potent immune regulators. Pancreatic macrophages are critically involved in the development and pathogenesis of autoimmune diabetes. To elucidate the ontogeny of pancreatic macrophages, we characterized in this study the macrophages present in the adult and developing fetal pancreas of normal mice. We additionally examined the presence of local macrophage precursors and the involvement of macrophages in the growth of endocrine tissue in the fetal pancreas. We identified two phenotypically distinct macrophage subsets in the adult pancreas. The majority of macrophages was CD45(+)ER-MP23(+)MOMA-1(+). Under noninflammatory conditions, only a minority ( approximately 5%) of the pancreatic macrophages additionally expressed the macrophage marker F4/80. In contrast, in the fetal pancreas, phenotypically, mature macrophages were identified exclusively by their expression of F4/80 and lacked detectable staining with ER-MP23 and MOMA-1 antibodies. In fetal pancreas organ cultures, we could show that macrophages develop from pre-existing precursors, which are present in the fetal pancreas at embryonic age 12.5. Moreover, the number of macrophages increased significantly when macrophage-colony stimulating factor was added to these cultures. It is important that this increase of F4/80-positive cells was paralleled by an increase in the number of insulin-producing cells, suggesting that macrophages support the growth of these endocrine cells.  (+info)

L-Alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic beta-cell line and protects from pro-inflammatory cytokine-induced apoptosis. (15/3468)

Acute effects of nutrient stimuli on pancreatic beta-cell function are widely reported; however, the chronic effects of insulinotropic amino acids, such as L-alanine, on pancreatic beta-cell function and integrity are unknown. In the present study, the effects of prolonged exposure (24 h) to the amino acid L-alanine on insulin secretory function, gene expression and pro-inflammatory cytokine-induced apoptosis were studied using clonal BRIN-BD11 cells. Expression profiling of BRIN-BD11 cells chronically exposed to L-alanine was performed using oligonucleotide microarray analysis. The effect of alanine, the iNOS (inducible nitric oxide synthase) inhibitor NMA (N(G)-methyl-L-arginine acetate) or the iNOS and NADPH oxidase inhibitor DPI (diphenylene iodonium) on apoptosis induced by a pro-inflammatory cytokine mix [IL-1beta (interleukin-1beta), TNF-alpha (tumour necrosis factor-alpha) and IFN-gamma (interferon-gamma)] was additionally assessed by flow cytometry. Culture for 24 h with 10 mM L-alanine resulted in desensitization to the subsequent acute insulin stimulatory effects of L-alanine. This was accompanied by substantial changes in gene expression of BRIN-BD11 cells. Sixty-six genes were up-regulated >1.8-fold, including many involved in cellular signalling, metabolism, gene regulation, protein synthesis, apoptosis and the cellular stress response. Subsequent functional experiments confirmed that L-alanine provided protection of BRIN-BD11 cells from pro-inflammatory cytokine-induced apoptosis. Protection from apoptosis was mimicked by NMA or DPI suggesting L-alanine enhances intracellular antioxidant generation. These observations indicate important long-term effects of L-alanine in regulating gene expression, secretory function and the integrity of insulin-secreting cells. Specific amino acids may therefore play a key role in beta-cell function in vivo.  (+info)

Expression of an uncleavable N-terminal RasGAP fragment in insulin-secreting cells increases their resistance toward apoptotic stimuli without affecting their glucose-induced insulin secretion. (16/3468)

Apoptosis of pancreatic beta cells is implicated in the onset of type 1 and type 2 diabetes. Consequently, strategies aimed at increasing the resistance of beta cells toward apoptosis could be beneficial in the treatment of diabetes. RasGAP, a regulator of Ras and Rho GTPases, is an atypical caspase substrate, since it inhibits, rather than favors, apoptosis when it is partially cleaved by caspase-3 at position 455. The antiapoptotic signal generated by the partial processing of RasGAP is mediated by the N-terminal fragment (fragment N) in a Ras-phosphatidylinositol 3-kinase-Akt-dependent, but NF-kappaB-independent, manner. Further cleavage of fragment N at position 157 abrogates its antiapoptotic properties. Here we demonstrate that an uncleavable form of fragment N activates Akt, represses NF-kappaB activity, and protects the conditionally immortalized pancreatic insulinoma betaTC-tet cell line against various insults, including exposure to genotoxins, trophic support withdrawal, and incubation with inflammatory cytokines. Fragment N also induced Akt activity and protection against cytokine-induced apoptosis in primary pancreatic islet cells. Fragment N did not alter insulin cell content and insulin secretion in response to glucose. These data indicate that fragment N protects beta cells without affecting their function. The pathways regulated by fragment N are therefore promising targets for antidiabetogenic therapy.  (+info)