Purine loss after repeated sprint bouts in humans. (17/679)

The influence of the number of sprint bouts on purine loss was examined in nine men (age 24.8 +/- 1.6 yr, weight 76 +/- 3.9 kg, peak O(2) consumption 3.87 +/- 0.16 l/min) who performed either one (B1), four (B4), or eight (B8) 10-s sprints on a cycle ergometer, 1 wk apart, in a randomized order. Forearm venous plasma inosine, hypoxanthine (Hx), and uric acid concentrations were measured at rest and during 120 min of recovery. Urinary inosine, Hx, and uric acid excretion were also measured before and 24 h after exercise. During the first 120 min of recovery, plasma inosine and Hx concentrations, and urinary Hx excretion rate, were progressively higher (P < 0.05) with an increasing number of sprint bouts. Plasma uric acid concentration was higher (P < 0.05) in B8 compared with B1 and B4 after 45, 60, and 120 min of recovery. Total urinary excretion of purines (inosine + Hx + uric acid) was higher (P < 0. 05) at 2 h of recovery after B8 (537 +/- 59 micromol) compared with the other trials (B1: 270 +/- 76; B4: 327 +/- 59 micromol). These results indicate that the loss of purine from the body was enhanced by increasing the number of intermittent 10-s sprint bouts.  (+info)

Rapid exchange of A:T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein. (18/679)

Human Rad51 belongs to a ubiquitous family of proteins that enable a single strand to recognize homology in duplex DNA, and thereby to initiate genetic exchanges and DNA repair, but the mechanism of recognition remains unknown. Kinetic analysis by fluorescence resonance energy transfer combined with the study of base substitutions and base mismatches reveals that recognition of homology, helix destabilization, exchange of base pairs, and initiation of strand exchange are integral parts of a rapid, concerted mechanism in which A:T base pairs play a critical role. Exchange of base pairs is essential for recognition of homology, and physical evidence indicates that such an exchange occurs early enough to mediate recognition.  (+info)

Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. (19/679)

Extracellular purines, including adenosine and ATP, are potent endogenous immunomodulatory molecules. Inosine, a degradation product of these purines, can reach high concentrations in the extracellular space under conditions associated with cellular metabolic stress such as inflammation or ischemia. In the present study, we investigated whether extracellular inosine can affect inflammatory/immune processes. In immunostimulated macrophages and spleen cells, inosine potently inhibited the production of the proinflammatory cytokines TNF-alpha, IL-1, IL-12, macrophage-inflammatory protein-1alpha, and IFN-gamma, but failed to alter the production of the anti-inflammatory cytokine IL-10. The effect of inosine did not require cellular uptake by nucleoside transporters and was partially reversed by blockade of adenosine A1 and A2 receptors. Inosine inhibited cytokine production by a posttranscriptional mechanism. The activity of inosine was independent of activation of the p38 and p42/p44 mitogen-activated protein kinases, the phosphorylation of the c-Jun terminal kinase, the degradation of inhibitory factor kappaB, and elevation of intracellular cAMP. Inosine suppressed proinflammatory cytokine production and mortality in a mouse endotoxemic model. Taken together, inosine has multiple anti-inflammatory effects. These findings, coupled with the fact that inosine has very low toxicity, suggest that this agent may be useful in the treatment of inflammatory/ischemic diseases.  (+info)

Adenosine and inosine increase cutaneous vasopermeability by activating A(3) receptors on mast cells. (20/679)

Adenosine has potent effects on both the cardiovascular and immune systems. Exposure of tissues to adenosine results in increased vascular permeability and extravasation of serum proteins. The mechanism by which adenosine brings about these physiological changes is poorly defined. Using mice deficient in the A(3) adenosine receptor (A(3)AR), we show that increases in cutaneous vascular permeability observed after treatment with adenosine or its principal metabolite inosine are mediated through the A(3)AR. Adenosine fails to increase vascular permeability in mast cell-deficient mice, suggesting that this tissue response to adenosine is mast cell-dependent. Furthermore, this response is independent of activation of the high-affinity IgE receptor (FcepsilonR1) by antigen, as adenosine is equally effective in mediating these changes in FcepsilonR1 beta-chain-deficient mice. Together these results support a model in which adenosine and inosine induce changes in vascular permeability indirectly by activating mast cells, which in turn release vasoactive substances. The demonstration in vivo that adenosine, acting through a specific receptor, can provoke degranulation of this important tissue-based effector cell, independent of antigen activation of the high-affinity IgE receptor, supports an important role for this nucleoside in modifying the inflammatory response.  (+info)

Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. (21/679)

The gerP1 transposon insertion mutation of Bacillus cereus is responsible for a defect in the germination response of spores to both L-alanine and inosine. The mutant is blocked at an early stage, before loss of heat resistance or release of dipicolinate, and the efficiency of colony formation on nutrient agar from spores is reduced fivefold. The protein profiles of alkaline-extracted spore coats and the spore cortex composition are unchanged in the mutant. Permeabilization of gerP mutant spores by coat extraction procedures removes the block in early stages of germination, although a consequence of the permeabilization procedure in both wild type and mutant is that late germination events are not complete. The complete hexacistronic operon that includes the site of insertion has been cloned and sequenced. Four small proteins encoded by the operon (GerPA, GerPD, GerPB, and GerPF) are related in sequence. A homologous operon (yisH-yisC) can be found in the Bacillus subtilis genome sequence; null mutations in yisD and yisF, constructed by integrational inactivation, result in a mutant phenotype similar to that seen in B. cereus, though somewhat less extreme and equally repairable by spore permeabilization. Normal rates of germination, as estimated by loss of heat resistance, are also restored to a gerP mutant by the introduction of a cotE mutation, which renders the spore coats permeable to lysozyme. The B. subtilis operon is expressed solely during sporulation, and is sigma K-inducible. We hypothesize that the GerP proteins are important as morphogenetic or structural components of the Bacillus spore, with a role in the establishment of normal spore coat structure and/or permeability, and that failure to synthesize these proteins during spore formation limits the opportunity for small hydrophilic organic molecules, like alanine or inosine, to gain access to their normal target, the germination receptor, in the spore.  (+info)

Purine nucleoside phosphorylase cleaves the C--O bond of ribose 1-phosphate. Evidence from the 18O shift in 31P NMR. (22/679)

An equilibrium mixture of highly enriched [18(O)]Pi (represents the mixture of [[18(O)4]Pi, [[18(O)3]Pi, [18(O)2]Pi as represented in the figures, unless otherwise specified), alpha-D-ribose 1-[16(O)]phosphate, and hypoxanthine plus inosine was equilibrated with calf spleen purine-nucleoside phosphorylase (EC 2.4.2.1). The 31P NMR spectrum clearly indicated the formation of alpha-D-ribose 1-[18(O)4]-phosphate and of [16(O)]Pi. Incubation for the same time span in the absence of alpha-D-ribose 1-phosphate left the [18(O)4]Pi isotopic distribution unchanged. The results clearly demonstrated that the C--O bond of alpha-D-ribose 1-phosphate is cleaved in the enzymatic reaction. It is unlikely that the enzyme catalyzes the exchange of oxygen between Pi and H2O. Several possible mechanistic pathways are ruled out by the results, which demand attack by a phosphate oxygen at the anomeric C-1' atom.  (+info)

Kinetic and pharmacological properties of cloned human equilibrative nucleoside transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-deficient PK15 cells. Ent2 exhibits a low affinity for guanosine and cytidine but a high affinity for inosine. (23/679)

We stably transfected the cloned human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2) into nucleoside transporter-deficient PK15NTD cells. Although hENT1 and hENT2 are predicted to be 50-kDa proteins, hENT1 runs as 40 kDa and hENT2 migrates as 50 and 47 kDa on SDS-polyacrylamide gel electrophoresis. Peptide N-glycosidase F and endoglycosidase H deglycosylate hENT1 to 37 kDa and hENT2 to 45 kDa. With hENT1 being more sensitive, there is a 7000-fold and 71-fold difference in sensitivity to nitrobenzylthioinosine (NBMPR) (IC(50), 0.4 +/- 0.1 nM versus 2.8 +/- 0.3 microM) and dipyridamole (IC(50), 5.0 +/- 0.9 nM versus 356 +/- 13 nM), respectively. [(3)H]NBMPR binds to ENT1 cells with a high affinity K(d) of 0.377 +/- 0.098 nM, and each ENT1 cell has 34,000 transporters with a turnover number of 46 molecules/s for uridine. Although both transporters are broadly selective, hENT2 is a generally low affinity nucleoside transporter with 2.6-, 2.8-, 7. 7-, and 19.3-fold lower affinity than hENT1 for thymidine, adenosine, cytidine, and guanosine, respectively. In contrast, the affinity of hENT2 for inosine is 4-fold higher than hENT1. The nucleobase hypoxanthine inhibits [(3)H]uridine uptake by hENT2 but has minimal effect on hENT1. Taken together, these results suggest that hENT2 might be important in transporting adenosine and its metabolites (inosine and hypoxanthine) in tissues such as skeletal muscle where ENT2 is predominantly expressed.  (+info)

Serum glucose and insulin response in rats administered with sucrose or starch containing adenosine, inosine or cytosine. (24/679)

Blood glucose and insulin responses and gastric emptying were examined in rats intubated with sucrose or soluble starch that contained adenosine, inosine and cytosine. The increase in serum glucose and insulin levels in the rats following loading with sucrose (2.5 g/kg of body weight) or soluble starch (1.875 g/kg of body weight) was significantly reduced by the administration of adenosine, inosine and cytosine (0.0625-0.125 g/kg of body weight). The gastric emptying rates were only marginally affected by the nucleoside administration. The activities of sucrase, maltase, isomaltase and glucoamylase in a crude preparation from the small intestinal mucosa of rats were mildly inhibited by the nucleosides. The decrease in blood glucose and insulin levels may have been in response to a decrease in glucose absorption caused by the inhibiting effect of the nucleosides on the mucosal enzymes that digest sucrose, maltose, and malto- and isomalto-oligosaccharides.  (+info)