Activation of constitutive 5-hydroxytryptamine(1B) receptor by a series of mutations in the BBXXB motif: positioning of the third intracellular loop distal junction and its G(o)alpha protein interactions. (49/4054)

Constitutive activity of the recombinant human 5-hydroxytryptamine(1B) (5-HT(1B)) receptor (RC code 2.1.5HT.01.B) was investigated by mutagenesis of the BBXXB motif (in which B represents a basic residue and X a non-basic residue) located in the C-terminal portion of the third intracellular loop. In contrast with wild-type 5-HT(1B) receptors, three receptor mutants (Thr(313)-->Lys, Thr(313)-->Arg and Thr(313)-->Gln) increased their agonist-independent guanosine 5'-[gamma-[(35)S]thio]triphosphate binding response by 26-41%. This activity represented approx. 30% of the maximal response induced by 5-HT and could be reversed by the inverse agonists methiothepin and 3-(3-dimethylaminopropyl)-4-hydroxy-N-(4-pyridin-4-yl phenyl)-benzenamide (GR 55562). Enhanced agonist-independent and agonist-dependent 5-HT(1B) receptor activation was provided by co-expression of a pertussis toxin-resistant rat G(o)alpha Cys(351)-->Ile protein. The wild-type 5-HT(1B) receptor displayed a doubling in basal activity, whereas a spectrum of enhanced basal activities (313-571%) was observed with a series of diverse amino acid substitutions (isoleucine, glycine, asparagine, alanine, lysine, phenylalanine, glutamine and arginine) at the 5-HT(1B) receptor position 313 in the presence of pertussis toxin (100 ng/ml). Consequently, the constitutive 5-HT(1B) receptor activity can be modulated by the mutation of Thr(313), and displays a graded range between 11% and 59% of maximal 5-HT(1B) receptor activation by 5-HT. No clear pattern is apparent in the framework of traditionally cited amino acid characteristics (i.e. residue size, charge or hydrophobicity) to explain the observed constitutive activities. The various amino acid substitutions that yielded enhanced activity are unlikely to make similar intramolecular interactions within the 5-HT(1B) receptor. It is hypothesized that the positioning of the junction between the third intracellular loop and transmembrane domain VI is altered by mutation of Thr(313) in the BBXXB motif and thereby unmasks G(alpha)-protein interaction points.  (+info)

Genetic analysis reveals that both haemagglutinin and neuraminidase determine the sensitivity of naturally occurring avian influenza viruses to zanamivir in vitro. (50/4054)

The basis of differential sensitivity of replication of influenza viruses to the neuraminidase-specific inhibitor zanamivir was examined using four avian influenza viruses and reassortants produced between them. IC(50) values for inhibition of neuraminidase activity by zanamivir were similar for each of the four viruses, whereas the haemagglutinating activity of each of the viruses was relatively insensitive to zanamivir. However, the four viruses showed distinct zanamivir-sensitivity profiles in tissue culture. Analysis of the reassortant viruses showed that sensitivity was determined by the haemagglutinin gene (segment 4) and the neuraminidase gene (segment 6) and was independent of the remaining six RNA segments. Decreased sensitivity to zanamivir was associated with possession of a haemagglutinin that is released from cells with decreased dependence on neuraminidase and with possession of a neuraminidase that has a short stalk region.  (+info)

Inhibition of the vacuolating and anion channel activities of the VacA toxin of Helicobacter pylori. (51/4054)

VacA, the vacuolating cytotoxin secreted by Helicobacter pylori, is believed to be a major causative factor in the development of gastroduodenal ulcers. This toxin causes vacuolation of cultured cells and it has recently been found to form anion-selective channels upon insertion into planar bilayers as well as in the plasma membrane of HeLa cells. Here, we identify a series of inhibitors of VacA channels and we compare their effectiveness as channel blockers and as inhibitors of VacA-induced vacuolation, confirming that the two phenomena are linked. This characterization opens the way to studies in other experimental systems and to the search for a specific inhibitor of VacA action.  (+info)

Determinants of activity of the antifolate thymidylate synthase inhibitors Tomudex (ZD1694) and GW1843U89 against mono- and multilayered colon cancer cell lines under folate-restricted conditions. (52/4054)

The cytotoxicity and metabolic effects of two thymidylate synthase (TS) inhibitors, Tomudex (Raltitrexed, ZD1694) and GW1843U89, were studied in WiDr colon cancer cells under four different growth conditions: as standard monolayers and as postconfluent multilayers grown under either high (WiDr, 8.8 microM folic acid) or low (WiDr/F, 1 nM leucovorin) folate conditions. Both GW1843U89 and ZD1694 were 13-15-fold more active against WiDr/F than WiDr cells when cultured as monolayers (IC50s in WiDr/F cells were 0.22 and 0.39 nM, respectively). WiDr cells were markedly less sensitive to the drugs when grown as multilayers (4-15-fold), in contrast to the WiDr/F cells, which were equally sensitive. However, total growth inhibition could not be achieved in WiDr multilayers (concentration causing total growth inhibition > 10,000 nM), whereas in WiDr/F multilayers, it could be achieved at 0.42 nM ZD1694 and 150 nM GW1843U89. Growth conditions markedly affected the TS levels when using different enzyme assays. At nonsaturating substrate concentrations, the catalytic activity of TS was similar in mono- and multilayers grown under high folate conditions but lower in multilayers at saturating concentrations. In cells grown under low folate conditions, TS catalytic activity was 3-6-fold lower in multilayers than in monolayers. This was consistent with a decrease in the number of S-phase cells in multilayers. Western blotting revealed less pronounced (2-3-fold) differences in the TS protein content. Exposure of the cells for 24 h to the drugs increased the TS levels by 4-fold. Because this increase in TS levels might explain the decrease in sensitivity to the TS inhibitors, we measured TS inhibition (TSI) by the drugs in intact cells using the TS in situ assay. GW1843U89 was more active than ZD1694. However, after 4 h of exposure in WiDr/F mono- and multilayers, TSI was in the same range for both drugs [50% TSI (TSI50), 0.5-1.7 nM]. In WiDr cells, the TSI50 for ZD1694, but not GW1843U89, was 10 times higher in the multilayers as compared to the monolayers. Despite the increase in TS protein levels, the extent of TSI was similar or even more pronounced in both cell lines grown as either multi- or monolayers. Because the cells were grown under depleted and folate-rich conditions that may affect folate uptake, we measured folate transport using methotrexate (MTX) as the reference drug for the activity of the reduced folate carrier. MTX uptake was 4-fold lower in multilayers compared to monolayers in both WiDr and WiDr/F cells. Uptake of MTX was 5-fold more effective in WiDr/F cells than in WiDr cells in both mono-and multilayers. In conclusion, the resistance of WiDr multilayers to the novel antifolates ZD1694 and GW1843U89 may be due to the high folate medium concentrations, which may be responsible for impaired drug uptake along with less effective TSI. In contrast, WiDr/F monolayers and multilayers were very sensitive to these antifolates. These effects of folate homeostasis may explain some of the variable results seen in treatment of solid tumors with new antifolate TS inhibitors.  (+info)

The renal cell carcinoma-associated antigen G250 encodes a human leukocyte antigen (HLA)-A2.1-restricted epitope recognized by cytotoxic T lymphocytes. (53/4054)

Evidence has accumulated that the immune system can play a significant role in the defense against tumors in humans. Especially melanoma and renal cell carcinoma (RCC) are considered immunogenic tumors. In contrast to melanoma, hardly any RCC-associated antigens have been identified as targets for RCC-reactive T cells. Here, we report the identification of a human leukocyte antigen (HLA)-A2.1-restricted T-cell epitope within the G250 antigen. This antigen is expressed in 85% of RCCs but not by neighboring normal kidney tissue and has recently been molecularly defined and shown to be identical to MN/CA IX. Computer-aided motif prediction revealed the presence of 60 potential HLA-A2.1-binding peptides within the G250 antigen. Subsequent binding analysis showed that 13 of these peptides bound to HLA-A2.1 with high-to-intermediate affinity. Analysis of their immunogenicity in HLA-A2.1Kb transgenic mice indicated that 4 of the 13 peptides gave rise to cytotoxic T lymphocytes (CTLs) capable of lysing peptide-loaded target cells. However, only the G250 peptide 254-262 induced CTLs that recognized target cells that endogenously expressed the G250 antigen. Similarly, we were also able to raise human CTLs against the G250 peptide 254-262, which lysed target cells that endogenously expressed the G250 antigen. These findings and the high prevalence of this antigen in RCC patients makes G250 a potential target for anti-RCC immunotherapy.  (+info)

The effect of increasing alpha1-acid glycoprotein concentration on the antiviral efficacy of human immunodeficiency virus protease inhibitors. (54/4054)

The effect of a 4-fold increase in alpha1-acid glycoprotein (AGP) on the antiviral efficacy of 5 human immunodeficiency virus (HIV) protease inhibitors (PIs) was examined by the effect of HIV PIs on p24 production in peripheral blood mononuclear cells infected with protease wild-type and PI-resistant HIV isolates. For wild-type virus, the efficacy of the PIs at trough concentrations was unaffected by a 4-fold increase in AGP. With the partially HIV PI-resistant isolate, a 4-fold increase in AGP resulted in 2%, 30%, 37%, 37%, and 42% loss of activity for indinavir, saquinavir, nelfinavir, ritonavir, and amprenavir, respectively. The high-level HIV PI-resistant isolate had a greater loss in activity. The change in IC50 secondary to the addition of AGP was the greatest for ritonavir, nelfinavir, and amprenavir and lowest for indinavir. These data suggest that the target plasma concentration for the highly bound HIV PIs may need to be raised in subjects with elevated AGP who harbor partially PI-resistant isolates.  (+info)

Inhibition of hepatitis C virus NS2/3 processing by NS4A peptides. Implications for control of viral processing. (55/4054)

The NS2/3 protease of hepatitis C virus is responsible for a single cleavage in the viral polyprotein between the nonstructural proteins NS2 and NS3. The minimal protein region necessary to catalyze this cleavage includes most of NS2 and the N-terminal one-third of NS3. Autocleavage reactions using NS2/3 protein translated in vitro are used here to investigate the inhibitory potential of peptides likely to affect the reaction. Peptides representing the cleaved sequence have no effect upon reaction rates, and the reaction rate is insensitive to dilution. Both results are consistent with prior suggestions that the NS2/3 cleavage is an intramolecular reaction. Surprisingly, peptides containing the 12-amino acid region of NS4A responsible for binding to NS3 inhibit the NS2/3 reaction with K(i) values as low as 3 microM. Unrelated peptide sequences of similar composition are not inhibitory, and neither are peptides containing incomplete segments of the NS4A region that binds to NS3. Inhibition of NS2/3 by NS4A peptides can be rationalized from the organizing effect of NS4A on the N terminus of NS3 (the NS2/3 cleavage point) as suggested by the known three-dimensional structure of the NS3 protease domain (Yan, Y., Li, Y., Munshi, S., Sardana, V., Cole, J. L., Sardana, M., Steinkuhler, C., Tomei, L., De Francesco, R., Kuo, L. C., and Chen, Z. (1998) Protein Sci. 7, 837-847). These findings may imply a sequential order to proteolytic maturation events in hepatitis C virus.  (+info)

Expression of an active, monomeric catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). (56/4054)

Phosphodiesterases (PDEs) comprise a superfamily of phosphohydrolases that degrade 3',5'-cyclic nucleotides. All known mammalian PDEs are dimeric, but the functional significance of dimerization is unknown. A deletion mutant of cGMP-binding cGMP-specific PDE (PDE5), encoding the 357 carboxyl-terminal amino acids including the catalytic domain, has been generated, expressed, and purified. The K(m) of the catalytic fragment for cGMP (5.5 +/- 0. 51 microM) compares well with those of the native bovine lung PDE5 (5.6 microM) and full-length wild type recombinant PDE5 (2 +/- 0.4 microM). The catalytic fragment and full-length PDE5 have similar IC(50) values for the inhibitors 3-isobutyl-1-methylxanthine (20 microM) and sildenafil (Viagra(TM))(4 nM). Based on measured values for Stokes radius (29 A) and sedimentation coefficient (2.9 S), the PDE5 catalytic fragment has a calculated molecular mass of 35 kDa, which agrees well with that predicted by amino acid content (43.3 kDa) and with that estimated using SDS-polyacrylamide gel electrophoresis (39 kDa). The combined data indicate that the recombinant PDE5 catalytic fragment is monomeric, and retains the essential catalytic features of the dimeric, full-length enzyme. Therefore, the catalytic activity of PDE5 holoenzyme requires neither interaction between the catalytic and regulatory domains nor interactions between subunits of the dimer.  (+info)