Id2 and p53 participate in apoptosis during unloading-induced muscle atrophy. (73/272)

Apoptotic signaling was examined in the patagialis (PAT) muscles of young adult and old quail. One wing was loaded for 14 days to induce hypertrophy and then unloaded for 7 or 14 days to induce muscle atrophy. Although the nuclear Id2 protein content was not different between unloaded and control muscles in either age group, cytoplasmic Id2 protein content of unloaded muscles was higher than that in contralateral control muscles after 7 days of unloading in young quails. Nuclear and cytoplasmic p53 contents and the p53 nuclear index of the unloaded muscles were higher than those in control muscles after 7 days of unloading in young quails, whereas in aged quails, the p53 and Id2 contents and p53 nuclear index of the unloaded muscles were not altered by unloading. Immunofluorescent staining indicated that myonuclei and activated satellite cell nuclei contributed to the increased number of p53-positive nuclei. Conversely, unloading in either young adult or aged PAT muscles did not alter c-Myc protein content. Although Cu-Zn-SOD content was not different in unloaded and control muscles, Mn-SOD content increased in PAT muscles after 7 days of unloading in young quails, suggesting that unloading induced an oxidative disturbance in these muscles. Moderate correlational relationships existed among Id2, p53, c-Myc, SOD, apoptosis-regulatory factors, and TdT-mediated dUTP nick end labeling index. These data indicate that Id2 and p53 are involved in the apoptotic responses during unloading-induced muscle atrophy after hypertrophy in young adult birds. Furthermore, our data suggest that there is an aging-dependent regulation of Id2 and p53 during unloading of previously hypertrophied muscles.  (+info)

The helix-loop-helix inhibitor of differentiation (ID) proteins induce post-mitotic terminally differentiated Sertoli cells to re-enter the cell cycle and proliferate. (74/272)

Prior to puberty the Sertoli cells undergo active cell proliferation, and at the onset of puberty they become a terminally differentiated postmitotic cell population that support spermatogenesis. The molecular mechanisms involved in the postmitotic block of pubertal and adult Sertoli cells are unknown. The four known helix-loop-helix ID proteins (i.e., Id1, Id2, Id3, and Id4) are considered dominant negative regulators of cellular differentiation pathways and act as positive regulators of cellular proliferation. ID proteins are expressed at low levels by postpubertal Sertoli cells and are transiently induced by serum. The hypothesis tested was that ID proteins can induce a terminally differentiated postmitotic Sertoli cell to reenter the cell cycle if they are constitutively expressed. To test this hypothesis, ID1 and ID2 were stably integrated and individually overexpressed in postmitotic rat Sertoli cells. Overexpression of ID1 or ID2 allowed postmitotic Sertoli cells to reenter the cell cycle and undergo mitosis. The cells continued to proliferate even after 300 cell doublings. The functional markers of Sertoli cell differentiation such as transferrin, inhibin alpha, Sert1, and androgen binding protein (ABP) continued to be expressed by the proliferating Sertoli cells, but at lower levels. FSH receptor expression was lost in the proliferating Sertoli cell-Id lines. Some Sertoli cell genes, such as cyclic protein 2 (cathepsin L) and Sry-related HMG box protein-11 (Sox11) increase in expression. At no stage of proliferation did the cells exhibit senescence. The expression profile as determined with a microarray protocol of the Sertoli cell-Id lines suggested an overall increase in cell cycle genes and a decrease in growth inhibitory genes. These results demonstrate that overexpression of ID1 and ID2 genes in a postmitotic, terminally differentiated cell type have the capacity to induce reentry into the cell cycle. The observations are discussed in regards to potential future applications in model systems of terminally differentiated cell types such as neurons or myocytes.  (+info)

Id2 reverses cell cycle arrest induced by {gamma}-irradiation in human HaCaT keratinocytes. (75/272)

Id2 plays a key role in epithelial cells, regulating differentiation, the cell cycle, and proliferation. Because human skin constantly renews itself and is the first target of irradiation, it is of primary interest to evaluate whether such a gene may be regulated in keratinocytes exposed to ionizing radiation. We show here that Id2 is induced in response to gamma-irradiation and have investigated the consequence of this regulation on cell fate. Using RNA interference, we observed that Id2 extinction significantly reduces cell growth in human keratinocytes through the control of the G(1)-S transition of the cell cycle. We have investigated whether the impact of Id2 on the cell cycle may have a physiological role on the cell's ability to cope with radiative stress. Indeed, when Id2 is down-regulated through interfering RNA, cells are more sensitive to irradiation. Conversely, when Id2 is overexpressed, this somehow protects the cell. We propose that Id2 favors reentering the cell cycle after radiation-induced cell cycle arrest to permit the recovery of keratinocytes exposed to ionizing radiation.  (+info)

Differential regulation of granulopoiesis by the basic helix-loop-helix transcriptional inhibitors Id1 and Id2. (76/272)

Inhibitor of DNA binding (Id) proteins function as inhibitors of members of the basic helix-loop-helix family of transcription factors and have been demonstrated to play an important role in regulating lymphopoiesis. However, the role of these proteins in regulation of myelopoiesis is currently unclear. In this study, we have investigated the role of Id1 and Id2 in the regulation of granulopoiesis. Id1 expression was initially up-regulated during early granulopoiesis, which was then followed by a decrease in expression during final maturation. In contrast, Id2 expression was up-regulated in terminally differentiated granulocytes. In order to determine whether Id expression plays a critical role in regulating granulopoiesis, Id1 and Id2 were ectopically expressed in CD34(+) cells by retroviral transduction. Our experiments demonstrate that constitutive expression of Id1 inhibits eosinophil development, whereas in contrast neutrophil differentiation was modestly enhanced. Constitutive Id2 expression accelerates final maturation of both eosinophils and neutrophils, whereas inhibition of Id2 expression blocks differentiation of both lineages. Transplantation of beta2-microglobulin(-/-) nonobese diabetic severe combined immunodeficient (NOD/SCID) mice with CD34(+) cells ectopically expressing Id1 resulted in enhanced neutrophil development, whereas ectopic expression of Id2 induced both eosinophil and neutrophil development. These data demonstrate that both Id1 and Id2 play a critical, although differential role in granulopoiesis.  (+info)

Ovol1 regulates meiotic pachytene progression during spermatogenesis by repressing Id2 expression. (77/272)

Previous studies have shown that a targeted deletion of Ovol1 (previously known as movo1), encoding a member of the Ovo family of zinc-finger transcription factors, leads to germ cell degeneration and defective sperm production in adult mice. To explore the cellular and molecular mechanism of Ovol1 function, we have examined the mutant testis phenotype during the first wave of spermatogenesis in juvenile mice. Consistent with the detection of Ovol1 transcripts in pachytene spermatocytes of the meiotic prophase, Ovol1-deficient germ cells were defective in progressing through the pachytene stage. The pachytene arrest was accompanied by an inefficient exit from proliferation, increased apoptosis and an abnormal nuclear localization of the G2-M cell cycle regulator cyclin B1, but was not associated with apparent chromosomal or recombination defects. Transcriptional profiling and northern blot analysis revealed reduced expression of pachytene markers in the mutant, providing molecular evidence that pachytene differentiation was defective. In addition, the expression of Id2 (inhibitor of differentiation 2), a known regulator of spermatogenesis, was upregulated in Ovol1-deficient pachytene spermatocytes and repressed by Ovol1 in reporter assays. Taken together, our studies demonstrate a role for Ovol1 in regulating pachytene progression of male germ cells, and identify Id2 as a Ovol1 target.  (+info)

Regulation of Id2 expression by CCAAT/enhancer binding protein beta. (78/272)

Mice deficient for Id2, a negative regulator of basic helix-loop-helix (bHLH) transcription factors, exhibit a defect in lactation due to impaired lobuloalveolar development during pregnancy, similar to the mice lacking the CCAAT enhancer binding protein (C/EBP) beta. Here, we show that Id2 is a direct target of C/EBPbeta. Translocation of C/EBPbeta into the nucleus, which was achieved by using a system utilizing the fusion protein between C/EBPbeta and the ligand-binding domain of the human estrogen receptor (C/EBPbeta-ERT), demonstrated the rapid induction of endogenous Id2 expression. In reporter assays, transactivation of the Id2 promoter by C/EBPbeta was observed and, among three potential C/EBPbeta binding sites found in the 2.3 kb Id2 promoter region, the most proximal element was responsible for the transactivation. Electrophoretic mobility shift assay (EMSA) identified this element as a core sequence to which C/EBPbeta binds. Chromatin immunoprecipitation (ChIP) furthermore confirmed the presence of C/EBPbeta in the Id2 promoter region. Northern blotting showed that Id2 expression in C/EBPbeta-deficient mammary glands was reduced at 10 days post coitus (d.p.c.), compared with that in wild-type mammary glands. Thus, our data demonstrate that Id2 is a direct target of C/EBPbeta and provide insight into molecular mechanisms underlying mammary gland development during pregnancy.  (+info)

Id2 mediates tumor initiation, proliferation, and angiogenesis in Rb mutant mice. (79/272)

The inhibitor of differentiation Id2 is a target of the retinoblastoma (Rb) protein during mouse embryogenesis. In Rb(+/-) mice, LOH at the wild-type Rb allele initiates pituitary adenocarcinoma, a tumor derived from embryonic melanotropes. Here we identify a critical role for Id2 in initiation, growth, and angiogenesis of pituitary tumors from Rb(+/-) mice. We show that proliferation and differentiation are intimately coupled in Rb(+/-) pituitary cells before tumor initiation. In Id2-null pituitaries, premature activation of basic helix-loop-helix-mediated transcription and expression of the cdk inhibitor p27(Kip1) impairs the proliferation of melanotropes and tumor initiation. Without Id2, Rb(+/-) mice have fewer early tumor lesions and a markedly decreased proliferation rate of the tumor foci. Expression of Id2 by pituitary tumor cells promotes growth and angiogenesis by functioning as a master regulator of vascular endothelial growth factor (VEGF). In human neuroblastoma, the N-Myc-driven expression of Id2 is sufficient and necessary for expression of VEGF. These results establish that aberrant Id2 activity directs initiation and progression of embryonal cancer.  (+info)

Identification and expression profile of the ID gene family in the rainbow trout (Oncorhynchus mykiss). (80/272)

ID proteins are negative regulators of basic helix-loop-helix transcription factors governing growth and development in mammals. However, little is known about the ID gene function and expression in fish. We report the identification and characterization of two new rainbow trout ID genes (ID1D and ID2B) and extend our expression analyses of two previously identified ID genes (ID1A and ID2A). Phylogenetic analyses indicate an evolutionary relationship between ID1A and ID1D and between ID1B and ID1C, suggesting a mechanism of divergence throughout salmonid evolution. To access the expression of these genes in adult and developing fish, we measured the relative transcript abundance of four ID1 and two ID2 genes by real-time PCR. ID1 transcripts were expressed in a variety of tissues and the ID1 paralogues showed similar patterns of expression, whereas the ID2 paralogues were differentially expressed. To access the role of the ID genes during embryonic development, gene expression was measured at early (day 0 and day 2), mid (day 9 and day 18) and late (day 30 and day 50) embryonic development. ID1A and ID1D expression remained unchanged throughout embryonic development, while ID1B and ID1C were lowest during early, highest at mid, and decreased during late embryonic development. The ID2 transcripts revealed the highest expression in unfertilized eggs and day 2 embryos, and remained low throughout the remainder of embryonic development. The sequence analyses and gene expression patterns implicate gene and genome duplication in rainbow trout ID gene evolution and suggest an extensive role for the IDs in rainbow trout growth and development.  (+info)