Alterations in gene expression in hamster diaphragm after emphysema and lung volume reduction surgery. (49/410)

The authors have demonstrated previously that emphysema and lung volume reduction surgery (LVRS) resulted in a significant shift of type IIx/b to type IIa fibres in the diaphragm of hamsters with elastase-induced emphysema. To explore the mechanisms leading to this fibre switching, the mRNA expression of the myogenic regulatory factors, the inhibitors of DNA binding proteins (Id-proteins) and insulin-like growth factor-I were examined. Ribonucleic acid was extracted from the diaphragm of control, emphysematous, emphysematous and sham operated and LVRS hamsters and subjected to reverse transcriptase polymerase chain reaction. Compared to control, the ratio MyoD to myogenin declined with emphysema, sham and even more after LVRS, due to a decrease in MyoD mRNA and an increase in myogenin mRNA. Similarly, compared to control, Id-1 protein mRNA levels decreased significantly in sham and even more in LVRS. Id-2 protein mRNA levels decreased in all groups, but reached statistical significance in LVRS only, compared to control. IN CONCLUSION: 1) the reduced MyoD/myogenin ratio may be the mechanism of the shift to a slower fibre type, 2) the decreased MyoD/myogenin ratio in lung volume reduction surgery animals suggests that lung volume reduction surgery enhances rather than decreases the load placed on the diaphragm and 3) the observed down-regulation of the inhibiting factors may facilitate the diaphragm adaptation to overload.  (+info)

Id proteins--tumor markers or oncogenes? (50/410)

The Id (Inhibitor of differentiation or Inhibitor of DNA-binding) proteins act as dominant negative inhibitors of differentiation-specific basic Helix-Loop-Helix (bHLH) transcription factors. Id proteins negatively regulate cellular differentiation and they induce proliferation by modulating different cell cycle regulators both by direct and indirect mechanisms. Ectopic expression of Id proteins in tissue culture models can result in cellular immortalization and abrogation of differentiation processes. Recent reports show that Id proteins are overexpressed in various cancer types implying a role of these regulatory proteins in carcinogenesis. This review focuses on the biology of the Id proteins and their role as potential oncogenes.  (+info)

Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. (51/410)

BACKGROUND: Bone morphogenetic proteins (BMPs) are multifunctional proteins that regulate the proliferation, differentiation, and migration of a large variety of cell types. Like other members of the transforming growth factor-beta family, BMPs elicit their cellular effects through activating specific combinations of type I and type II serine/threonine kinase receptors and their downstream effector proteins, which are termed Smads. In the present study, we investigated BMP receptor/Smad expression and signaling in endothelial cells (ECs) and examined the effects of BMP on EC behavior. METHODS AND RESULTS: Immunohistochemical analysis of tissue sections of human colon and mouse heart and aorta showed that BMP receptors are expressed in ECs in vivo. Bovine aortic ECs and mouse embryonic ECs were found to express BMP receptors and their Smads. BMP receptor activation induced the phosphorylation of specific Smad proteins and promoted EC migration and tube formation. Id1 was identified as a BMP/Smad target in ECs. Ectopic expression of Id1 mimicked BMP-induced effects. Importantly, specific interference with Id1 expression blocked BMP-induced EC migration. CONCLUSIONS: The BMP/Smad pathway can potently activate the endothelium. Id1 expression is strongly induced by BMP in ECs. Ectopic expression of Id1 induces EC migration and tube formation. Moreover, Id1 played a critical role in mediating BMP-induced EC migration.  (+info)

Induction of C/EBPalpha activity alters gene expression and differentiation of human CD34+ cells. (52/410)

The CCAAT/enhancer binding protein alpha (C/EBPalpha) belongs to a family of transcription factors that are involved in the differentiation process of numerous tissues, including the liver and hematopoietic cells. C/EBPalpha(-/-) mice show a block in hematopoietic differentiation, with an accumulation of myeloblasts and an absence of mature granulocytes, whereas expression of C/EBPalpha in leukemia cell lines leads to granulocytic differentiation. Recently, dominant-negative mutations in the C/EBPalpha gene and down-regulation of C/EBPalpha by AML1-ETO, an AML associated fusion protein, have been identified in acute myelogenous leukemia (AML). To better understand the role of C/EBPalpha in the lineage commitment and differentiation of hematopoietic progenitors, we transduced primary human CD34(+) cells with a retroviral construct that expresses the C/EBPalpha cDNA fused in-frame with the estrogen receptor ligand-binding domain. Induction of C/EBPalpha function in primary human CD34(+) cells, by the addition of beta-estradiol, leads to granulocytic differentiation and inhibits erythrocyte differentiation. Using Affymetrix (Santa Clara, CA) oligonucleotide arrays we have identified C/EBPalpha target genes in primary human hematopoietic cells, including granulocyte-specific genes that are involved in hematopoietic differentiation and inhibitor of differentiation 1 (Id1), a transcriptional repressor known to interfere with erythrocyte differentiation. Given the known differences in murine and human promoter regulatory sequences, this inducible system allows the identification of transcription factor target genes in a physiologic, human hematopoietic progenitor cell background.  (+info)

Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. (53/410)

In this study we have developed bioluminescence-imaging strategies to noninvasively and quantitatively image protein-protein interactions in living mice by using a cooled charge-coupled device camera and split reporter technology. We validate both complementation and intein-mediated reconstitution of split firefly luciferase proteins driven by the interaction of two strongly interacting proteins, MyoD and Id. We use transient transfection of cells and image MyoD-Id interaction after induction of gene expression in cell culture and in cells implanted into living mice. Techniques to study protein-protein interactions in living subjects will allow the study of cellular networks, including signal transduction pathways, as well as development and optimization of pharmaceuticals for modulating protein-protein interactions.  (+info)

Activation of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth. (54/410)

The helix-loop-helix protein Id-1 has been suggested to play a positive role in cell proliferation and tumorigenesis of many types of human cancers. However, little is known about the molecular mechanism involved in the function of Id-1. In this study, using four stable Id-1 transfectant clones, we investigated the involvement of MAPK signaling pathway in the Id-1 induced serum independent prostate cancer cell growth. Our results demonstrated that both transient and stable ectopic Id-1 expression in prostate cancer LNCaP cells led to activation of the Raf/MEK1/2 signaling pathway. In addition, inhibition of MEK1/2 phosphorylation by one of its inhibitors, PD098059, resulted in the decreased cell cycle S phase fraction and cell growth rate, suggesting that activation of MAPK signaling pathway is essential for Id-1 induced prostate cancer cell proliferation. Furthermore, treatment with antisense oligonucleotide complementary to Id-1 mRNA in PC-3 and DU145 cells resulted in a decreased Id-1 expression which was accompanied by decreased Egr-1 protein. Our results suggest for the first time that the function of Id-1 is associated with MAPK signaling pathway activation and indicate a possible novel mechanism in which Id-1 regulates prostate cancer cell growth and tumorigenesis.  (+info)

Cell cycle blockade and differentiation of ovarian cancer cells by the histone deacetylase inhibitor trichostatin A are associated with changes in p21, Rb, and Id proteins. (55/410)

Inhibitors of histone deacetylase activity are emerging as a potentially important new class of anticancer agents. In the current studies, exposing A2780 ovarian cancer cells to the histone deacetylase inhibitor trichostatin A (TSA) produced a marked change in cellular morphology, proliferation, and differentiation. Within 24 h of TSA treatment, there was a morphological transformation of the cells, with increased cytoplasm, a more epithelial-like columnar appearance, and the emergence of distinct cellular boundaries. Commensurate with the morphological transformation, TSA also inhibited cell proliferation; cells treated with TSA for 72 h increased to 110% of the initial cell numbers versus control cell numbers of 622%, with a corresponding reduction in mitotic activity and a flow cytometry S-phase fraction of 3.9% in TSA-treated cells versus 28.8% for control. TSA also induced epithelial-like differentiation with increased cytokeratin expression from 2% of controls to 22-25% of TSA-treated cells and the reappearance of intercellular plasma membrane junctions and primitive microvilli. Immunocytochemical analyses indicate the molecular mechanism underlying the actions of TSA on A2780 cell cycle progression and differentiation involves reexpression of the CDK inhibitor p21. Elevated levels of p21, in TSA-treated cells, were associated with a reduction in the phosphorylation of the cell cycle regulator retinoblastoma protein (Rb). TSA also caused a decrease in the helix-loop-helix inhibitor of differentiation/DNA binding protein Id1, with no change in Id2 levels. In conclusion, the observed TSA-induced changes in p21, Rb, and Id1 are consistent with cell cycle senescence and differentiation of A2780 ovarian cancer cells.  (+info)

Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. (56/410)

Id proteins are helix-loop-helix transcription factors that regulate tumor angiogenesis. In order to identify downstream effectors of Id1 involved in the regulation of angiogenesis, we performed PCR-select subtractive hybridization on wild-type and Id1 knockout mouse embryo fibroblasts (MEFs). Here we demonstrate that thrombospondin-1 (TSP-1), a potent inhibitor of angiogenesis, is a target of transcriptional repression by Id1. We also show that Id1-null MEFs secrete an inhibitor of endothelial cell migration, which is completely inactivated by depletion of TSP-1. Furthermore, in vivo studies revealed decreased neovascularization in matrigel assays in Id1-null mice compared to their wild-type littermates. This decrease was completely reversed by a TSP-1 neutralizing antibody. We conclude that TSP-1 is a major target for Id1 effects on angiogenesis.  (+info)