Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8(+) T-cell memory. (1/106)

The recall of CD8(+) T-cell memory established by infecting H-2(b) mice with an H1N1 influenza A virus provided a measure of protection against an extremely virulent H7N7 virus. The numbers of CD8(+) effector and memory T cells specific for the shared, immunodominant D(b)NP(366) epitope were greatly increased subsequent to the H7N7 challenge, and though lung titers remained as high as those in naive controls for 5 days or more, the virus was cleared more rapidly. Expanding the CD8(+) memory T-cell pool (<0.5 to >10%) by sequential priming with two different influenza A viruses (H3N2-->H1N1) gave much better protection. Though the H7N7 virus initially grew to equivalent titers in the lungs of naive and double-primed mice, the replicative phase was substantially controlled within 3 days. This tertiary H7N7 challenge caused little increase in the magnitude of the CD8(+) D(b)NP(366)(+) T-cell pool, and only a portion of the memory population in the lymphoid tissue could be shown to proliferate. The great majority of the CD8(+) D(b)NP(366)(+) set that localized to the infected respiratory tract had, however, cycled at least once, though recent cell division was shown not to be a prerequisite for T-cell extravasation. The selective induction of CD8(+) T-cell memory can thus greatly limit the damage caused by a virulent influenza A virus, with the extent of protection being directly related to the number of available responders. Furthermore, a large pool of CD8(+) memory T cells may be only partially utilized to deal with a potentially lethal influenza infection.  (+info)

Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. (2/106)

Highly pathogenic avian influenza A viruses of subtypes H5 and H7 are the causative agents of fowl plague in poultry. Influenza A viruses of subtype H5N1 also caused severe respiratory disease in humans in Hong Kong in 1997 and 2003, including at least seven fatal cases, posing a serious human pandemic threat. Between the end of February and the end of May 2003, a fowl plague outbreak occurred in The Netherlands. A highly pathogenic avian influenza A virus of subtype H7N7, closely related to low pathogenic virus isolates obtained from wild ducks, was isolated from chickens. The same virus was detected subsequently in 86 humans who handled affected poultry and in three of their family members. Of these 89 patients, 78 presented with conjunctivitis, 5 presented with conjunctivitis and influenza-like illness, 2 presented with influenza-like illness, and 4 did not fit the case definitions. Influenza-like illnesses were generally mild, but a fatal case of pneumonia in combination with acute respiratory distress syndrome occurred also. Most virus isolates obtained from humans, including probable secondary cases, had not accumulated significant mutations. However, the virus isolated from the fatal case displayed 14 amino acid substitutions, some of which may be associated with enhanced disease in this case. Because H7N7 viruses have caused disease in mammals, including horses, seals, and humans, on several occasions in the past, they may be unusual in their zoonotic potential and, thus, form a pandemic threat to humans.  (+info)

Avian influenza A virus (H7N7) epidemic in The Netherlands in 2003: course of the epidemic and effectiveness of control measures. (3/106)

An epidemic of high-pathogenicity avian influenza (HPAI) A virus subtype H7N7 occurred in The Netherlands in 2003 that affected 255 flocks and led to the culling of 30 million birds. To evaluate the effectiveness of the control measures, we quantified between-flock transmission characteristics of the virus in 2 affected areas, using the reproduction ratio Rh. The control measures markedly reduced the transmission of HPAI virus: Rh before detection of the outbreak in the first infected flock was 6.5 (95% confidence interval [CI], 3.1-9.9) in one area and 3.1 in another area, and it decreased to 1.2 (95% CI, 0.6-1.9) after detection of the first outbreak in both areas. The observation that Rh remained >1 suggests that the containment of the epidemic was probably due to the reduction in the number of susceptible flocks by complete depopulation of the infected areas rather than to the reduction of the transmission by the other control measures.  (+info)

Isolation, sequencing and phylogenetic analysis of the hemagglutinin, neuraminidase and nucleoprotein genes of the Chilean equine influenza virus subtypes H7N7 and H3N8. (4/106)

We report here on the isolation and sequencing of the hemagglutinin, neuraminidase and nucleoprotein genes of the Chilean equine influenza virus subtypes H7N7 (A/equi-1/Santiago/77, Sa77) and H3N8 (A/equi-2/Santiago/85, Sa85). The sequences obtained allowed a variability analysis, which indicated significant differences when compared with other isolates. We found that Chilean isolates are more similar to the North American variety than to European isolates. Isolate Sa77 is a good candidate for inclusion in a vaccine as it is the latest isolate of the subtype H7N7 and is probably better-adapted to the equine host. Isolate Sa85, of subtype H3N8, also appears to be a good candidate since it has no significant differences in the main antigenic sites with recent isolates.  (+info)

Protection of mice against lethal infection with highly pathogenic H7N7 influenza A virus by using a recombinant low-pathogenicity vaccine strain. (5/106)

In 2003, an outbreak of highly pathogenic avian influenza occurred in The Netherlands. The avian H7N7 virus causing the outbreak was also detected in 88 humans suffering from conjunctivitis or mild respiratory symptoms and one person who died of pneumonia and acute respiratory distress syndrome. Here we describe a mouse model for lethal infection with A/Netherlands/219/03 isolated from the fatal case. Because of the zoonotic and pathogenic potential of the H7N7 virus, a candidate vaccine carrying the avian hemagglutinin and neuraminidase proteins produced in the context of the high-throughput vaccine strain A/PR/8/34 was generated by reverse genetics and tested in the mouse model. The hemagglutinin gene of the recombinant vaccine strain was derived from a low-pathogenicity virus obtained prior to the outbreak from a wild mallard. The efficacy of a classical nonadjuvanted subunit vaccine and an immune stimulatory complex-adjuvanted vaccine was compared. Mice receiving the nonadjuvanted vaccine revealed low antibody titers, lack of clinical protection, high virus titers in the lungs, and presence of virus in the spleen, liver, kidneys, and brain. In contrast, mice receiving two doses of the immune stimulatory complex-adjuvanted vaccine revealed high antibody titers, clinical protection, approximately 1,000-fold reduction of virus titers in the lungs, and rare detection of the virus in other organs. This is the first report of an H7 vaccine candidate tested in a mammalian model. The data presented suggest that vaccine candidates based on low-pathogenicity avian influenza A viruses, which can be prepared ahead of pandemic threats, can be efficacious if an effective adjuvant is used.  (+info)

Serological analysis of serum samples from humans exposed to avian H7 influenza viruses in Italy between 1999 and 2003. (6/106)

We evaluated the potential for avian-to-human transmission of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI) H7N1 and LPAI H7N3 viruses that were responsible for several outbreaks of influenza in poultry in Italy between 1999 and 2003. A serological survey of poultry workers was conducted by use of a combination of methods. Evidence of anti-H7 antibodies was observed in 3.8% of serum samples collected from poultry workers during the period in 2003 when LPAI H7N3 virus was circulating. These findings highlight the need for surveillance in people occupationally exposed to avian influenza viruses, so that they can be monitored for the risk of avian-to-human transmission during outbreaks of avian influenza caused by both LPAI and HPAI viruses.  (+info)

Mallards and highly pathogenic avian influenza ancestral viruses, northern Europe. (7/106)

Outbreaks of highly pathogenic avian influenza (HPAI), which originate in poultry upon transmission of low pathogenic viruses from wild birds, have occurred relatively frequently in the last decade. During our ongoing surveillance studies in wild birds, we isolated several influenza A viruses of hemagglutinin subtype H5 and H7 that contain various neuraminidase subtypes. For each of the recorded H5 and H7 HPAI outbreaks in Europe since 1997, our collection contained closely related virus isolates recovered from wild birds, as determined by sequencing and phylogenetic analyses of the hemagglutinin gene and antigenic characterization of the hemagglutinin glycoprotein. The minor genetic and antigenic diversity between the viruses recovered from wild birds and those causing HPAI outbreaks indicates that influenza A virus surveillance studies in wild birds can help generate prototypic vaccine candidates and design and evaluate diagnostic tests, before outbreaks occur in animals and humans.  (+info)

Quantification of the effect of vaccination on transmission of avian influenza (H7N7) in chickens. (8/106)

Recent outbreaks of highly pathogenic avian influenza (HPAI) viruses in poultry and their threatening zoonotic consequences emphasize the need for effective control measures. Although vaccination of poultry against avian influenza provides a potentially attractive control measure, little is known about the effect of vaccination on epidemiologically relevant parameters, such as transmissibility and the infectious period. We used transmission experiments to study the effect of vaccination on the transmission characteristics of HPAI A/Chicken/Netherlands/03 H7N7 in chickens. In the experiments, a number of infected and uninfected chickens is housed together and the infection chain is monitored by virus isolation and serology. Analysis is based on a stochastic susceptible, latently infected, infectious, recovered (SEIR) epidemic model. We found that vaccination is able to reduce the transmission level to such an extent that a major outbreak is prevented, important variables being the type of vaccine (H7N1 or H7N3) and the moment of challenge after vaccination. Two weeks after vaccination, both vaccines completely block transmission. One week after vaccination, the H7N1 vaccine is better than the H7N3 vaccine at reducing the spread of the H7N7 virus. We discuss the implications of these findings for the use of vaccination programs in poultry and the value of transmission experiments in the process of choosing vaccine.  (+info)