Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. (1/1550)

An H5N1 avian influenza A virus was transmitted to humans in Hong Kong in 1997. Although the virus causes systemic infection and is highly lethal in chickens because of the susceptibility of the hemagglutinin to furin and PC6 proteases, it is not known whether it also causes systemic infection in humans. The clinical outcomes of infection in Hong Kong residents ranged widely, from mild respiratory disease to multiple organ failure leading to death. Therefore, to understand the pathogenesis of influenza due to these H5N1 isolates, we investigated their virulence in mice. The results identified two distinct groups of viruses: group 1, for which the dose lethal for 50% of mice (MLD50) was between 0.3 and 11 PFU, and group 2, for which the MLD50 was more than 10(3) PFU. One day after intranasal inoculation of mice with 100 PFU of group 1 viruses, the virus titer in lungs was 10(7) PFU/g or 3 log units higher than that for group 2 viruses. Both types of viruses had replicated to high titers (>10(6) PFU/g) in the lungs by day 3 and maintained these titers through day 6. More importantly, only the group 1 viruses caused systemic infection, replicating in nonrespiratory organs, including the brain. Immunohistochemical analysis demonstrated the replication of a group 1 virus in brain neurons and glial cells and in cardiac myofibers. Phylogenetic analysis of all viral genes showed that both groups of Hong Kong H5N1 viruses had formed a lineage distinct from those of other viruses and that genetic reassortment between H5N1 and H1 or H3 human viruses had not occurred. Since mice and humans harbor both the furin and the PC6 proteases, we suggest that the virulence mechanism responsible for the lethality of influenza viruses in birds also operates in mammalian hosts. The failure of some H5N1 viruses to produce systemic infection in our model indicates that multiple, still-to-be-identified, factors contribute to the severity of H5N1 infection in mammals. In addition, the ability of these viruses to produce systemic infection in mice and the clear differences in pathogenicity among the isolates studied here indicate that this system provides a useful model for studying the pathogenesis of avian influenza virus infection in mammals.  (+info)

Rapid evolution of H5N1 influenza viruses in chickens in Hong Kong. (2/1550)

The H5N1 avian influenza virus that killed 6 of 18 persons infected in Hong Kong in 1997 was transmitted directly from poultry to humans. Viral isolates from this outbreak may provide molecular clues to zoonotic transfer. Here we demonstrate that the H5N1 viruses circulating in poultry comprised two distinguishable phylogenetic lineages in all genes that were in very rapid evolution. When introduced into new hosts, influenza viruses usually undergo rapid alteration of their surface glycoproteins, especially in the hemagglutinin (HA). Surprisingly, these H5N1 isolates had a large proportion of amino acid changes in all gene products except in the HA. These viruses maybe reassortants each of whose HA gene is well adapted to domestic poultry while the rest of the genome arises from a different source. The consensus amino acid sequences of "internal" virion proteins reveal amino acids previously found in human strains. These human-specific amino acids may be important factors in zoonotic transmission.  (+info)

Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. (3/1550)

From May to December 1997, 18 cases of mild to severe respiratory illness caused by avian influenza A (H5N1) viruses were identified in Hong Kong. The emergence of an avian virus in the human population prompted an epidemiological investigation to determine the extent of human-to-human transmission of the virus and risk factors associated with infection. The hemagglutination inhibition (HI) assay, the standard method for serologic detection of influenza virus infection in humans, has been shown to be less sensitive for the detection of antibodies induced by avian influenza viruses. Therefore, we developed a more sensitive microneutralization assay to detect antibodies to avian influenza in humans. Direct comparison of an HI assay and the microneutralization assay demonstrated that the latter was substantially more sensitive in detecting human antibodies to H5N1 virus in infected individuals. An H5-specific indirect enzyme-linked immunosorbent assay (ELISA) was also established to test children's sera. The sensitivity and specificity of the microneutralization assay were compared with those of an H5-specific indirect ELISA. When combined with a confirmatory H5-specific Western blot test, the specificities of both assays were improved. Maximum sensitivity (80%) and specificity (96%) for the detection of anti-H5 antibody in adults aged 18 to 59 years were achieved by using the microneutralization assay combined with Western blotting. Maximum sensitivity (100%) and specificity (100%) in detecting anti-H5 antibody in sera obtained from children less than 15 years of age were achieved by using ELISA combined with Western blotting. This new test algorithm is being used for the seroepidemiologic investigations of the avian H5N1 influenza outbreak.  (+info)

Recombinant influenza A virus vaccines for the pathogenic human A/Hong Kong/97 (H5N1) viruses. (4/1550)

Recombinant reassortment technology was used to prepare H5N1 influenza vaccine strains containing a modified hemagglutinin (HA) gene and neuraminidase gene from the A/Hong Kong/156/97 and A/Hong Kong/483/97 isolates and the internal genes from the attenuated cold-adapted A/Ann Arbor/6/60 influenza virus strain. The HA cleavage site (HA1/HA2) of each H5N1 isolate was modified to resemble that of "low-pathogenic" avian strains. Five of 6 basic amino acids at the cleavage site were deleted, and a threonine was added upstream of the remaining arginine. The H5 HA cleavage site modification resulted in the expected trypsin-dependent phenotype without altering the antigenic character of the H5 HA molecule. The temperature-sensitive and cold-adapted phenotype of the attenuated parent virus was maintained in the recombinant strains, and they grew to 108.5-9.4 EID50/mL in eggs. Both H5N1 vaccine virus strains were safe and immunogenic in ferrets and protected chickens against wild-type H5N1 virus challenge.  (+info)

A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. (5/1550)

During 1997 in Hong Kong, 18 human cases of respiratory illness, including 6 fatalities, were caused by highly pathogenic avian influenza A (H5N1) viruses. Since H5 viruses had previously been isolated only from avian species, the outbreak raised questions about the ability of these viruses to cause severe disease and death in humans. To better understand the pathogenesis and immunity to these viruses, we have used the BALB/c mouse model. Four H5N1 viruses replicated equally well in the lungs of mice without prior adaptation but differed in lethality for mice. H5N1 viruses that were highly lethal for mice were detected in multiple organs, including the brain. This is the first demonstration of an influenza A virus that replicates systemically in a mammalian species and is neurotropic without prior adaptation. The mouse model was also used to evaluate a strategy of vaccination against the highly pathogenic avian H5N1 viruses, using an inactivated vaccine prepared from nonpathogenic A/Duck/Singapore-Q/F119-3/97 (H5N3) virus that was antigenically related to the human H5N1 viruses. Mice administered vaccine intramuscularly, with or without alum, were completely protected from lethal challenge with H5N1 virus. Protection from infection was also observed in 70% of animals administered vaccine alone and 100% of mice administered vaccine with alum. The protective effect of vaccination correlated with the level of virus-specific serum antibody. These results suggests a strategy of vaccine preparedness for rapid intervention in future influenza pandemics that uses antigenically related nonpathogenic viruses as vaccine candidates.  (+info)

Case-control study of risk factors for avian influenza A (H5N1) disease, Hong Kong, 1997. (6/1550)

In May 1997, a 3-year-old boy in Hong Kong died of a respiratory illness related to influenza A (H5N1) virus infection, the first known human case of disease from this virus. An additional 17 cases followed in November and December. A case-control study of 15 of these patients hospitalized for influenza A (H5N1) disease was conducted using controls matched by age, sex, and neighborhood to determine risk factors for disease. Exposure to live poultry (by visiting either a retail poultry stall or a market selling live poultry) in the week before illness began was significantly associated with H5N1 disease (64% of cases vs. 29% of controls, odds ratio, 4.5, P=.045). By contrast, travel, eating or preparing poultry products, recent exposure to persons with respiratory illness, including persons with known influenza A (H5N1) infection, were not associated with H5N1 disease.  (+info)

Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? (7/1550)

The origin of the H5N1 influenza viruses that killed six of eighteen infected humans in 1997 and were highly pathogenic in chickens has not been resolved. These H5N1 viruses transmitted directly to humans from infected poultry. In the poultry markets in Hong Kong, both H5N1 and H9N2 influenza viruses were cocirculating, raising the possibility of genetic reassortment. Here we analyze the antigenic and genetic features of H9N2 influenza viruses with different epidemiological backgrounds. The results suggest that the H9N2 influenza viruses of domestic ducks have become established in the domestic poultry of Asia. Phylogenetic and antigenic analyses of the H9N2 viruses isolated from Hong Kong markets suggest three distinct sublineages. Among the chicken H9N2 viruses, six of the gene segments were apparently derived from an earlier chicken H9N2 virus isolated in China, whereas the PB1 and PB2 genes are closely related to those of the H5N1 viruses and a quail H9N2 virus-A/quail/Hong Kong/G1/97 (Qa/HK/G1/97)-suggesting that many of the 1997 chicken H9 isolates in the markets were reassortants. The similarity of the internal genes of Qa/HK/G1/97 virus to those of the H5N1 influenza viruses suggests that the quail virus may have been the internal gene donor. Our findings indicate that the human and poultry H5N1 influenza viruses in Hong Kong in 1997 were reassortants that obtained internal gene segments from Qa/HK/G1/97. However, we cannot be certain whether the replicate complex of H5N1 originated from Qa/HK/G1/97 or whether the reverse transfer occurred; the available evidence supports the former proposal.  (+info)

Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. (8/1550)

Analysis of the sequences of all eight RNA segments of the influenza A/G oose/Guangdong/1/96 (H5N1) virus, isolated from a sick goose during an outbreak in Guangdong province, China, in 1996, revealed that the hemagglutinin (HA) gene of the virus was genetically similar to those of the H5N1 viruses isolated in Hong Kong in 1997. However, the remaining genes showed greater similarity to other avian influenza viruses. Notably, the neuraminidase gene did no have the 19-amino-acid deletion in the stalk region seen in the H5N1 Hong Kong viruses and the NS gene belonged to allele B, while that of the H5N1 Hong Kong viruses belonged to allele A. These data suggest that the H5N1 viruses isolated from the Hong Kong outbreaks derived their HA genes from a virus similar to the A/Goose/Guangdong/1/96 virus or shared a progenitor with this goose pathogen.  (+info)