Influenza virus NS1 protein protects against lymphohematopoietic pathogenesis in an in vivo mouse model. (57/1009)

Destruction of peripheral lymphocytes and detrimental alterations in hematopoietic precursors are associated with influenza virus infection in birds and humans. A prominent feature among H5N1 influenza-virus-infected patients with a severe or fatal outcome was found to be lymphopenia and reactive hemophagocytosis. We show here that NS1 protein from human H5N1 influenza isolate A/HK/156/97 reduces both systemic and pulmonary pro-inflammatory cytokines in an in vivo mouse model and protects against bone marrow lymphocyte depletion, an effect which has been shown to be mediated by TNFalpha. These data suggest that the outcome of disease-associated lymphohematopoietic pathogenesis with a pathogenic influenza A virus may depend on the balance between the virus-replication-induced generation of pro-inflammatory cytokines which are a crucial component of the host's anti-viral defense and the ability of the NS1 protein, with or without the interaction of other virus proteins, to counteract such cytokine-mediated adverse effects.  (+info)

Synchrony, waves, and spatial hierarchies in the spread of influenza. (58/1009)

Quantifying long-range dissemination of infectious diseases is a key issue in their dynamics and control. Here, we use influenza-related mortality data to analyze the between-state progression of interpandemic influenza in the United States over the past 30 years. Outbreaks show hierarchical spatial spread evidenced by higher pairwise synchrony between more populous states. Seasons with higher influenza mortality are associated with higher disease transmission and more rapid spread than are mild ones. The regional spread of infection correlates more closely with rates of movement of people to and from their workplaces (workflows) than with geographical distance. Workflows are described in turn by a gravity model, with a rapid decay of commuting up to around 100 km and a long tail of rare longer range flow. A simple epidemiological model, based on the gravity formulation, captures the observed increase of influenza spatial synchrony with transmissibility; high transmission allows influenza to spread rapidly beyond local spatial constraints.  (+info)

Bacterial sinusitis and otitis media following influenza virus infection in ferrets. (59/1009)

Streptococcus pneumoniae is the leading cause of otitis media, sinusitis, and pneumonia. Many of these infections result from antecedent influenza virus infections. In this study we sought to determine whether the frequency and character of secondary pneumococcal infections differed depending on the strain of influenza virus that preceded bacterial challenge. In young ferrets infected with influenza virus and then challenged with pneumococcus, influenza viruses of any subtype increased bacterial colonization of the nasopharynx. Nine out of 10 ferrets infected with H3N2 subtype influenza A viruses developed either sinusitis or otitis media, while only 1 out of 11 ferrets infected with either an H1N1 influenza A virus or an influenza B virus did so. These data may partially explain why bacterial complication rates are higher during seasons when H3N2 viruses predominate. This animal model will be useful for further study of the mechanisms that underlie viral-bacterial synergism.  (+info)

Phase I evaluation of intranasal trivalent inactivated influenza vaccine with nontoxigenic Escherichia coli enterotoxin and novel biovector as mucosal adjuvants, using adult volunteers. (60/1009)

Trivalent influenza virus A/Duck/Singapore (H5N3), A/Panama (H3N2), and B/Guandong vaccine preparations were used in a randomized, controlled, dose-ranging phase I study. The vaccines were prepared from highly purified hemagglutinin and neuraminidase from influenza viruses propagated in embryonated chicken eggs and inactivated with formaldehyde. We assigned 100 participants to six vaccine groups, as follows. Three intranasally vaccinated groups received 7.5-microg doses of hemagglutinin from each virus strain with either 3, 10, or 30 microg of heat-labile Escherichia coli enterotoxin (LTK63) and 990 microg of a supramolecular biovector; one intranasally vaccinated group was given 7.5-microg doses of hemagglutinin with 30 microg of LTK63 without the biovector; and another intranasally vaccinated group received saline solution as a placebo. The final group received an intramuscular vaccine containing 15 microg hemagglutinin from each strain with MF59 adjuvant. The immunogenicity of two intranasal doses, delivered by syringe as drops into both nostrils with an interval of 1 week between, was compared with that of two inoculations by intramuscular delivery 3 weeks apart. The intramuscular and intranasal vaccine formulations were both immunogenic but stimulated different limbs of the immune system. The largest increase in circulating antibodies occurred in response to intramuscular vaccination; the largest mucosal immunoglobulin A (IgA) response occurred in response to mucosal vaccination. Current licensing criteria for influenza vaccines in the European Union were satisfied by serum hemagglutination inhibition responses to A/Panama and B/Guandong hemagglutinins given with MF59 adjuvant by injection and to B/Guandong hemagglutinin given intranasally with the highest dose of LTK63 and the biovector. Geometric mean serum antibody titers by hemagglutination inhibition and microneutralization were significantly higher for each virus strain at 3 and 6 weeks in recipients of the intramuscular vaccine than in recipients of the intranasal vaccine. The immunogenicity of the intranasally delivered experimental vaccine varied by influenza virus strain. Mucosal IgA responses to A/Duck/Singapore (H5N3), A/Panama (H3N2), and B/Guandong were highest in participants given 30 microg LTK63 with the biovector, occurring in 7/15 (47%; P=0.0103), 8/15 (53%; P=0.0362), and 14/15 (93%; P=0.0033) participants, respectively, compared to the placebo group. The addition of the biovector to the vaccine given with 30 microg LTK63 enhanced mucosal IgA responses to A/Duck/Singapore (H5N3) (P=0.0491) and B/Guandong (P=0.0028) but not to A/Panama (H3N2). All vaccines were well tolerated.  (+info)

Isolation and genetic characterization of new reassortant H3N1 swine influenza virus from pigs in the midwestern United States. (61/1009)

Since the introduction of H3N2 swine influenza viruses (SIVs) into U.S. swine in 1998, H1N2 and H1N1 reassortant viruses have emerged from reassortment between classical H1N1 and H3N2 viruses. In 2004, a new reassortant H3N1 virus (A/Swine/Minnesota/00395/2004) was identified from coughing pigs. Phylogenetic analyses revealed a hemagglutinin segment similar to those of contemporary cluster III H3N2 SIVs and a neuraminidase sequence of contemporary H1N1 origin. The internal genes were of swine, human, and avian influenza virus origin, similar to those of contemporary U.S. cluster III H3N2 SIVs. The recovery of H3N1 is further evidence of reassortment among SIVs and justifies continuous surveillance.  (+info)

T cell responses are better correlates of vaccine protection in the elderly. (62/1009)

It is commonly held that increased risk of influenza in the elderly is due to a decline in the Ab response to influenza vaccination. This study prospectively evaluated the relationship between the development of influenza illness, and serum Ab titers and ex vivo cellular immune responses to influenza vaccination in community dwelling older adults including those with congestive heart failure (CHF). Adults age 60 years and older (90 subjects), and 10 healthy young adult controls received the 2003-04 trivalent inactivated influenza vaccine. Laboratory diagnosed influenza (LDI) was documented in 9 of 90 older adults. Pre- and postvaccination Ab titers did not distinguish between subjects who would subsequently develop influenza illness (LDI subjects) and those who would not (non-LDI subjects). In contrast, PBMC restimulated ex vivo with live influenza virus preparations showed statistically significant differences between LDI and non-LDI subjects. The mean IFN-gamma:IL-10 ratio in influenza A/H3N2-stimulated PBMC was 10-fold lower in LDI vs non-LDI subjects. Pre-and postvaccination granzyme B levels were significantly lower in CHF subjects with LDI compared with subjects without LDI. In non-CHF subjects with LDI, granzyme B levels increased to high levels at the time of influenza infection. In conclusion, measures of the ex vivo cellular immune response to influenza are correlated with protection against influenza while serum Ab responses may be limited as a sole measure of vaccine efficacy in older people. Ex vivo measures of the cell-mediated immune response should be incorporated into evaluation of new vaccines for older adults.  (+info)

A pandemic on the horizon. (63/1009)

A pandemic of human influenza is on the horizon: the question is not whether it will arrive but when. Knowing that a pandemic is coming provides an opportunity to plan ahead to mitigate against its impact. However, there are inevitably many uncertainties and managing these, under a constant media spotlight, is an additional and novel challenge.  (+info)

Analysis of gene-expression profiles by oligonucleotide microarray in children with influenza. (64/1009)

In order to clarify the mechanism of the host response to influenza virus, gene-expression profiles of peripheral blood obtained from paediatric patients with influenza were investigated by oligonucleotide microarray. In the acute phase of influenza, 200 genes were upregulated and 20 genes were downregulated compared with their expression in the convalescent phase. Interferon-regulated genes, such as interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) and vipirin, were strongly upregulated in the acute phase. Gene ontology analysis showed that immune response genes were highly overrepresented among the upregulated genes. Gene-expression profiles of influenza patients with and without febrile convulsion were also studied. In patients with febrile convulsion, 22 genes were upregulated and five were downregulated compared with their expression in patients without febrile convulsion. These results should help to clarify the pathogenesis of influenza and its neurological complications.  (+info)