Differential localization and turnover of infectious bronchitis virus 3b protein in mammalian versus avian cells. (49/235)

Infectious bronchitis virus (IBV) 3b protein is highly conserved among group 3 coronaviruses, suggesting that it is important for infection. A previous report (Virology 2003, 311:16-27) indicated that transfected IBV 3b localized to the nucleus in mammalian cells using a vaccinia-virus expression system. Although we confirmed these findings, we observed cytoplasmic localization of IBV 3b with apparent exclusion from the nucleus in avian cells (IBV normally infects chickens). IBV 3b was virtually undetectable by microscopy in mammalian cells transfected without vaccinia virus and in IBV-infected mammalian cells because of a greatly reduced half-life in these cells. A proteasome inhibitor stabilized IBV 3b in mammalian cells, but had little effect on IBV 3b in avian cells, suggesting that rapid turnover of IBV 3b in mammalian cells is proteasome-dependent while turnover in avian cells may be proteasome-independent. Our results highlight the importance of using cells derived from the natural host when studying coronavirus non-structural proteins.  (+info)

The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties. (50/235)

The coronavirus nucleocapsid (N) protein packages viral genomic RNA into a ribonucleoprotein complex. Interactions between N proteins and RNA are thus crucial for the assembly of infectious virus particles. The 45 kDa recombinant nucleocapsid N protein of coronavirus infectious bronchitis virus (IBV) is highly sensitive to proteolysis. We obtained a stable fragment of 14.7 kDa spanning its N-terminal residues 29-160 (IBV-N29-160). Like the N-terminal RNA binding domain (SARS-N45-181) of the severe acute respiratory syndrome virus (SARS-CoV) N protein, the crystal structure of the IBV-N29-160 fragment at 1.85 A resolution reveals a protein core composed of a five-stranded antiparallel beta sheet with a positively charged beta hairpin extension and a hydrophobic platform that are probably involved in RNA binding. Crosslinking studies demonstrate the formation of dimers, tetramers, and higher multimers of IBV-N. A model for coronavirus shell formation is proposed in which dimerization of the C-terminal domain of IBV-N leads to oligomerization of the IBV-nucleocapsid protein and viral RNA condensation.  (+info)

Neither the RNA nor the proteins of open reading frames 3a and 3b of the coronavirus infectious bronchitis virus are essential for replication. (51/235)

Gene 3 of infectious bronchitis virus is tricistronic; open reading frames (ORFs) 3a and 3b encode two small nonstructural (ns) proteins, 3a and 3b, of unknown function, and a third, structural protein E, is encoded by ORF 3c. To determine if either the 3a or the 3b protein is required for replication, we first modified their translation initiation codons to prevent translation of the 3a and 3b proteins from recombinant infectious bronchitis viruses (rIBVs). Replication in primary chick kidney (CK) cells and in chicken embryos was not affected. In chicken tracheal organ cultures (TOCs), the recombinant rIBVs reached titers similar to those of the wild-type virus, but in the case of viruses lacking the 3a protein, the titer declined reproducibly earlier. Translation of the IBV E protein is believed to be initiated by internal entry of ribosomes at a structure formed by the sequences corresponding to ORFs 3a and 3b. To assess the necessity of this mechanism, we deleted most of the sequence representing 3a and 3b to produce a gene in which ORF 3c (E) was adjacent to the gene 3 transcription-associated sequence. Western blot analysis revealed that the recombinant IBV produced fivefold less E protein. Nevertheless, titers produced in CK cells, embryos, and TOCs were similar to those of the wild-type virus, although they declined earlier in TOCs, probably due to the absence of the 3a protein. Thus, neither the tricistronic arrangement of gene 3, the internal initiation of translation of E protein, nor the 3a and 3b proteins are essential for replication per se, suggesting that these proteins are accessory proteins that may have roles in vivo.  (+info)

The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells. (52/235)

Coronaviruses are the causative agents of respiratory disease in humans and animals, including severe acute respiratory syndrome. Fusion of coronaviruses is generally thought to occur at neutral pH, although there is also evidence for a role of acidic endosomes during entry of a variety of coronaviruses. Therefore, the molecular basis of coronavirus fusion during entry into host cells remains incompletely defined. Here, we examined coronavirus-cell fusion and entry employing the avian coronavirus infectious bronchitis virus (IBV). Virus entry into cells was inhibited by acidotropic bases and by other inhibitors of pH-dependent endocytosis. We carried out fluorescence-dequenching fusion assays of R18-labeled virions and show that for IBV, coronavirus-cell fusion occurs in a low-pH-dependent manner, with a half-maximal rate of fusion occurring at pH 5.5. Fusion was reduced, but still occurred, at lower temperatures (20 degrees C). We observed no effect of inhibitors of endosomal proteases on the fusion event. These data are the first direct measure of virus-cell fusion for any coronavirus and demonstrate that the coronavirus IBV employs a direct, low-pH-dependent virus-cell fusion activation reaction. We further show that IBV was not inactivated, and fusion was unaffected, by prior exposure to pH 5.0 buffer. Virions also showed evidence of reversible conformational changes in their surface proteins, indicating that aspects of the fusion reaction may be reversible in nature.  (+info)

Evolutionary implications of Avian Infectious Bronchitis Virus (AIBV) analysis. (53/235)

For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bronchitis Virus (AIBV) antigenic domain of a vaccine serotype (DE072) and a virulent viral strain (GA98) to better understand adaptive evolution of AIBV. In addition, the SARS Coronavirus (SARS-CoV) was also analyzed in the same way. It is interesting to find that extreme comparability exists between AIBV and SARS in amino acid substitution pattern. It suggests that amino acid changes that result in overall shift of residue charge and polarity should be paid special attention to during the development of vaccines.  (+info)

A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. (54/235)

The E1 glycoprotein from an avian coronavirus is a model protein for studying retention in the Golgi complex. In animal cells expressing the protein from cDNA, the E1 protein is targeted to cis Golgi cisternae (Machamer, C. E., S. A. Mentone, J. K. Rose, and M. G. Farquhar. 1990. Proc. Natl. Acad. Sci. USA. 87:6944-6948). We show that the first of the three membrane-spanning domains of the E1 protein can retain two different plasma membrane proteins in the Golgi region of transfected cells. Both the vesicular stomatitis virus G protein and the alpha-subunit of human chorionic gonadotropin (anchored to the membrane by fusion with the G protein membrane-spanning domain and cytoplasmic tail) were retained in the Golgi region of transfected cells when their single membrane-spanning domains were replaced with the first membrane-spanning domain from E1. Single amino acid substitutions in this sequence released retention of the chimeric G protein, as well as a mutant E1 protein which lacks the second and third membrane-spanning domains. The important feature of the retention sequence appears to be the uncharged polar residues which line one face of a predicted alpha helix. This is the first retention signal to be defined for a resident Golgi protein. The fact that it is present in a membrane-spanning domain suggests a novel mechanism of retention in which the membrane composition of the Golgi complex plays an instrumental role in retaining its resident proteins.  (+info)

Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication. (55/235)

In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G2/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G1 regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G2/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the G0 phase or asynchronously replicating cells. Our data suggested that IBV induces a G2/M phase arrest in infected cells to promote favorable conditions for viral replication.  (+info)

Sialic acid is a receptor determinant for infection of cells by avian Infectious bronchitis virus. (56/235)

The importance of sialic acid for infection by avian Infectious bronchitis virus (IBV) has been analysed. Neuraminidase treatment rendered Vero, baby hamster kidney and primary chicken kidney cells resistant to infection by the IBV-Beaudette strain. Sialic acid-dependent infection was also observed with strain M41 of IBV, which infects primary chicken kidney cells but not cells from other species. In comparison with Influenza A virus and Sendai virus, IBV was most sensitive to pre-treatment of cells with neuraminidase. This finding suggests that IBV requires a greater amount of sialic acid on the cell surface to initiate an infection compared with the other two viruses. In previous studies, with respect to the haemagglutinating activity of IBV, it has been shown that the virus preferentially recognizes alpha2,3-linked sialic acid. In agreement with this finding, susceptibility to infection by IBV was connected to the expression of alpha2,3-linked sialic acid as indicated by the reactivity with the lectin Maackia amurensis agglutinin. Here, it is discussed that binding to sialic acid may be used by IBV for primary attachment to the cell surface; tighter binding and subsequent fusion between the viral and the cellular membrane may require interaction with a second receptor.  (+info)