Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice. (9/4263)

1. Isometric tension was recorded in isolated rings of aorta, carotid, coronary and mesenteric arteries taken from endothelial nitric oxide synthase knockout mice (eNOS(-/-) mice) and the corresponding wild-type strain (eNOS(+/+) mice). The membrane potential of smooth muscle cells was measured in coronary arteries with intracellular microelectrodes. 2. In the isolated aorta, carotid and coronary arteries from the eNOS(+/+) mice, acetylcholine induced an endothelium-dependent relaxation which was inhibited by N(omega)-L-nitro-arginine. In contrast, in the mesenteric arteries, the inhibition of the cholinergic relaxation required the combination of N(omega)-L-nitro-arginine and indomethacin. 3. The isolated aorta, carotid and coronary arteries from the eNOS(-/-) mice did not relax in response to acetylcholine. However, acetylcholine produced an indomethacin-sensitive relaxation in the mesenteric artery from eNOS(-/-) mice. 4. The resting membrane potential of smooth muscle cells from isolated coronary arteries was significantly less negative in the eNOS(-/-) mice (-64.8 +/- 1.8 mV, n = 20 and -58.4 +/- 1.9 mV, n = 17, for eNOS(+/+) and eNOS(-/-) mice, respectively). In both strains, acetylcholine, bradykinin and substance P did not induce endothelium-dependent hyperpolarizations whereas cromakalim consistently produced hyperpolarizations (- 7.9 +/- 1.1 mV, n = 8 and -13.8 +/- 2.6 mV, n = 4, for eNOS(+/+) and eNOS(-/-) mice, respectively). 5. These findings demonstrate that in the blood vessels studied: (1) in the eNOS(+/+) mice, the endothelium-dependent relaxations to acetylcholine involve either NO or the combination of NO plus a product of cyclo-oxygenase but not EDHF; (2) in the eNOS(-/-) mice, NO-dependent responses and EDHF-like responses were not observed. In the mesenteric arteries acetylcholine releases a cyclo-oxygenase derivative.  (+info)

Maintenance of normal agonist-induced endothelium-dependent relaxation in uraemic and hypertensive resistance vessels. (10/4263)

BACKGROUND: The nitric oxide system has been implicated in several diseases with vascular complications including diabetes mellitus and hypertension. Despite the high prevalence of hypertension and cardiovascular complications in renal failure few studies have examined vascular and endothelial function in uraemia. We therefore chose to study possible abnormalities of the nitric oxide vasodilator system in an animal model of chronic renal failure. METHODS: Adult spontaneous hypertensive rats and Wistar Kyoto rats were subjected to a 5/6 nephrectomy with control animals having sham operations. After 4 weeks blood pressure was recorded and the animals were sacrificed. Branches of the mesenteric arteries were isolated and mounted on a Mulvany myograph. All experiments were performed in the presence of indomethacin (10(-5) M). The vessels were first preconstricted with noradrenaline, exposed to increasing concentrations of acetylcholine (10(-8) to 10(-4) M) and subsequently to sodium nitroprusside (10(-5) M). RESULTS: There was no difference in the relaxation of the four groups of vessels to any of the concentrations of acetylcholine used nor was there any significant difference in the EC50s (control Wistar Kyoto 6.1+/-1.4 x 10(-8) M; uraemic Wistar Kyoto 5.4+/-0.8 x 10(-8) M; control spontaneous hypertensive rats 4.5+/-0.6 x 10(-8) M; uraemic spontaneous hypertensive rats 6+/-0.7 x 10(-8) M). Vasodilatation in response to sodium nitroprusside was unchanged in uraemic vessels. In addition the vascular responses to both acetylcholine and sodium nitroprusside were unaltered in spontaneous hypertensive rats. CONCLUSIONS: We conclude that normal agonist-induced endothelium-dependent relaxation is maintained in experimental uraemia and hypertension.  (+info)

Acute haemodynamic and proteinuric effects of prednisolone in patients with a nephrotic syndrome. (11/4263)

BACKGROUND: Administration of prednisolone causes an abrupt rise in proteinuria in patients with a nephrotic syndrome. METHODS: To clarify the mechanisms responsible for this increase in proteinuria we have performed a placebo controlled study in 26 patients with a nephrotic syndrome. Systemic and renal haemodynamics and urinary protein excretion were measured after prednisolone and after placebo. RESULTS: After i.v. administration of 125-150 mg prednisolone total proteinuria increased from 6.66+/-4.42 to 9.37+/-6.07 mg/min (P<0.001). By analysing the excretion of proteins with different charge and weight (albumin, transferrin, IgG, IgG4 and beta2-microglobulin) it became apparent that the increase of proteinuria was the result of a change in size selectivity rather than a change in glomerular charge selectivity or tubular protein reabsorption. Glomerular filtration rate rose from 83+/-34 ml to 95+/-43 ml/min (P<0.001) after 5 h, whereas effective renal plasma flow and endogenous creatinine clearance remained unchanged. As a result filtration fraction was increased, compatible with an increased glomerular pressure, which probably contributes to the size selectivity changes. Since corticosteroids affect both the renin-angiotensin system and renal prostaglandins, we have evaluated the effects of prednisolone on proteinuria after pretreatment with 3 months of the angiotensin-converting enzyme inhibitor lisinopril or after 2 weeks of the prostaglandin synthesis inhibitor indomethacin. Neither drug had any effect on prednisolone-induced increases of proteinuria. CONCLUSIONS: Prednisolone increases proteinuria by changing the size selective barrier of the glomerular capillary. Neither the renin-angiotensin axis nor prostaglandins seem to be involved in these effects of prednisolone on proteinuria.  (+info)

Inhibition of effects of flow on potassium permeability in single perfused frog mesenteric capillaries. (12/4263)

1. We have investigated the effects of various potential inhibitors on flow-dependent K+ permeability (PK) of single perfused mesenteric microvessels in pithed frogs. 2. Neither superfusion with a nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (10 or 100 micromol l-1), nor the addition of indomethacin (30 micromol l-1) to both perfusate and superfusate reduced the positive correlation between PK and flow velocity (U). 3. In the presence of agents known to raise intracellular levels of adenosine 3',5'-cyclic monophosphate (noradrenaline, 8-bromo-cAMP and a combination of forskolin and rolipram) the slope of the relation between PK and U was no longer significant, so that PK was no longer flow dependent. 4. These results confirm that the flow dependence of PK is a biological process and not an artefact of measurement and suggest a role for intracellular cAMP rather than nitric oxide or prostacyclin in the flow-dependent modulation of PK in frog mesenteric microvessels.  (+info)

Effectiveness of indomethacin as an antitumor agent in Colon 26-bearing conventional and nude mice, and telomerase activity in the tumors. (13/4263)

The antitumor effect of indomethacin on Colon 26 tumor was investigated in conventional (CDF1) and nude mice (BALB/c nu/nu), and the telomerase activity in the tumor tissues treated with indomethacin was monitored. Growth of Colon 26 tumor was significantly suppressed with indomethacin treatment compared to the controls both in conventional and nude mice. And telomerase activity in the tumor tissues noticeably declined in contrast to normal somatic tissues (testis, liver and colon), which were not affected by indomethacin treatment. We also showed that indomethacin can suppress tumor growth in association with a preferential decrease in telomerase activity in tumor tissues both in conventional and nude mice to the same extent. This study suggests a method for investigating the mechanism of tumor suppression by indomethacin, and suggests that indomethacin might be useful as a novel agent for human cancer therapy.  (+info)

Fish oil constituent docosahexa-enoic acid selectively inhibits growth of human papillomavirus immortalized keratinocytes. (14/4263)

The omega-3-fatty acids inhibit proliferation of breast cancer cells whereas omega-6-fatty acids stimulate growth. In this study, we examined effects of these fatty acids on human pre-cancerous cells. Cervical keratinocytes, immortalized with the oncogenic human papillomavirus (HPV) type 16, were treated with linoleic acid, an omega-6-fatty acid, and the omega-3-fatty acids, eicosapentaenoic and docosahexaenoic acids. Using both cell counts and bromodeoxyuridine incorporation, docosahexaenoic acid inhibited growth of these cells to a greater extent than eicosapenta-enoic acid. Linoleic acid had no effect. The effect of docosahexaenoic acid was dose dependent and caused growth arrest. Docosahexaenoic acid inhibited growth of HPV16 immortalized foreskin keratinocytes and laryngeal keratinocytes grown from explants of benign tumors caused by papillomavirus, but had no effect on normal foreskin and laryngeal keratinocytes. Docosahexaenoic acid inhibited growth in the presence of estradiol, a growth stimulator for these cells. Indomethacin, a cyclooxygenase inhibitor like docosahexaenoic acid, had only minimal effect on growth. Alpha-tocopherol, a peroxidation inhibitor, abrogated effects of docosahexaenoic acid implying that inhibitory effects were via lipid peroxidation.  (+info)

Experimental enteropathy in athymic and euthymic rats: synergistic role of lipopolysaccharide and indomethacin. (15/4263)

The aim of this study was to investigate the immunologic and microbiological bases of indomethacin enteropathy. Athymic nude and euthymic specific pathogen-free (SPF) rats were reared under conventional or SPF conditions. In each group, indomethacin was given intrarectally for 2 days. Indomethacin enteropathy was evaluated using a previously described ulcer index and tissue myeloperoxidase activity. Both euthymic and athymic nude rats developed intestinal ulcers to the same degree under conventional conditions but no or minimal ulcer under SPF conditions. Pretreatment of conventional rats with intragastric kanamycin sulfate, an aminoglycoside antibiotic, attenuated indomethacin enteropathy in a dose-dependent fashion. Interestingly, when lipopolysaccharide was injected intraperitoneally in kanamycin-pretreated rats, it fully restored enteropathy in these rats in a dose-dependent manner. We confirmed that kanamycin decreased the number of gram-negative bacteria and endotoxin concentration of the small intestine in a dose-dependent fashion. These results indicate that indomethacin enteropathy is bacteria dependent and does not require a T cell function. Synergy between indomethacin and bacterial lipopolysaccharide may play a major role in this enteropathy.  (+info)

Inhibition of NO synthesis or endothelium removal reveals a vasoconstrictor effect of insulin on isolated arterioles. (16/4263)

In this study we tested the hypothesis that insulin may differentially affect isolated arterioles from red (RGM) and white gastrocnemius muscles (WGM) because of their differences in function and metabolic profile. We also determined whether the responses of these arterioles are endothelium dependent and mediated by either prostaglandins or nitric oxide (NO). Arterioles were isolated, pressurized to 85 mmHg, equilibrated in Krebs bicarbonate-buffered solution (pH 7.4) gassed with 10% O2 (5% CO2-85% N2), and studied in a no-flow state. Control diameters for first-order arterioles from RGM averaged 77 +/- 8 micrometers and from WGM averaged 77 +/- 5 micrometers. Cumulative dose-response curves to insulin (10 microU/ml, 100 microU/ml, 1 mU/ml, and 10 mU/ml) were obtained in arterioles before and after endothelium removal or administration of either indomethacin (Indo, 10(-5) M) or NG-nitro-L-arginine (L-NNA, 10(-4) M). Insulin evoked concentration-dependent increases in control diameter of intact RGM and WGM arterioles of 6-26% and 9-28%, respectively. Indo was without any effect on insulin-induced dilation in RGM and WGM arterioles. Insulin-evoked dilation in both RGM and WGM arterioles was completely inhibited and converted to vasoconstriction by endothelium removal and administration of L-NNA. These results indicate that in endothelium-intact arterioles from RGM and WGM, insulin evokes an endothelium-dependent dilation that is equivalent and mediated by NO. In contrast, in the absence of a functional endothelium, insulin evokes arteriolar constriction. The finding that insulin can constrict arterioles, at physiological concentrations, suggests that insulin may play a more significant role in the regulation of vascular tone and total peripheral resistance than previously appreciated.  (+info)