Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids. (41/4263)

Conventional nonsteroidal anti-inflammatory drugs inhibit both cyclooxygenase (Cox) isoforms (Cox-1 and Cox-2) and may be associated with nephrotoxicity. The present study was undertaken to assess the renal effects of the specific Cox-2 inhibitor, MK-966. Healthy older adults (n = 36) were admitted to a clinical research unit, placed on a fixed sodium intake, and randomized under double-blind conditions to receive the specific Cox-2 inhibitor, MK-966 (50 mg every day), a nonspecific Cox-1/Cox-2 inhibitor, indomethacin (50 mg t.i.d.), or placebo for 2 weeks. All treatments were well tolerated. Both active regimens were associated with a transient but significant decline in urinary sodium excretion during the first 72 h of treatment. Blood pressure and body weight did not change significantly in any group. The glomerular filtration rate (GFR) was decreased by indomethacin but was not changed significantly by MK-966 treatment. Thromboxane biosynthesis by platelets was inhibited by indomethacin only. The urinary excretion of the prostacyclin metabolite 2,3-dinor-6-keto prostaglandin F1alpha was decreased by both MK-966 and indomethacin and was unchanged by placebo. Cox-2 may play a role in the systemic biosynthesis of prostacyclin in healthy humans. Selective inhibition of Cox-2 by MK-966 caused a clinically insignificant and transient retention of sodium, but no depression of GFR. Inhibition of both Cox isoforms by indomethacin caused transient sodium retention and a decline in GFR. Our data suggest that acute sodium retention by nonsteroidal anti-inflammatory drugs in healthy elderly subjects is mediated by the inhibition of Cox-2, whereas depression of GFR is due to inhibition of Cox-1.  (+info)

Mechanisms of endothelin-induced venoconstriction in isolated guinea pig mesentery. (42/4263)

In the present study, endothelin (ET) agonists and receptor selective antagonists were used to characterize ET receptors mediating constriction in guinea pig mesenteric veins (250-300 micrometers diameter) in vitro. The contribution of ET-evoked vasodilator release to venous tone was also explored. Computer-assisted video microscopy was used to monitor vein diameter. Endothelin-1 (ET-1), endothelin-3 (ET-3), and sarafotoxin 6c (S6c) produced sustained concentration-dependent contractions with a rank order agonist potency of ET-1 = S6c > ET-3. Indomethacin (1 microM) and Nomega-nitro-L-arginine (100 microM) enhanced ET-1 and S6c responses. The ETA selective antagonists BQ-610 (100 nM) and PD156707 (10 nM) shifted ET-1 concentration-response curves rightward and decreased maximal ET-1 responses, without changing S6c responses. The ETB selective antagonist BQ-788 (100 nM) shifted S6c responses rightward but produced no change in ET-1 responses. Combined application of BQ-788 and BQ-610 or BQ-788 and PD 156707 produced a rightward shift in ET-1 responses that was greater than shifts produced by BQ-610 or PD 156707 alone. In conclusion, smooth muscle in guinea pig mesenteric veins expresses ETA and ETB receptors coupled to contractile mechanisms. Activation of endothelial ETB receptors results in release of vasodilators, primarily nitric oxide.  (+info)

Plaunotol prevents indomethacin-induced gastric mucosal injury in rats by inhibiting neutrophil activation. (43/4263)

BACKGROUND: Activated neutrophils play a critical role in indomethacin-induced gastric mucosal injury. AIM: To investigate the effect of plaunotol, an anti-ulcer agent, on neutrophil activation in vitro and its effect on gastric mucosal injury and gastric accumulation of neutrophils in rats given indomethacin. METHODS: Human monocytes and neutrophils were isolated from the peripheral blood of healthy volunteers. We examined the effect of plaunotol on neutrophil elastase release, production of O2-, intracellular calcium concentration and expression of adhesion molecules CD11b and CD18 in activated neutrophils in vitro. The effect of plaunotol on TNF-alpha production by monocytes stimulated with endotoxin also was investigated in vitro. The effect of plaunotol (100 mg/kg, p.o.) on gastric mucosal injury and neutrophil accumulation was investigated in male Wistar rats given indomethacin (30 mg/kg, p.o.). RESULTS: Plaunotol inhibited the fMLP-induced release of neutrophil elastase from activated neutrophils, as well as the opsonized zymosan-induced production of O2- by neutrophils. Plaunotol significantly inhibited increased levels of intracellular calcium, a second messenger of neutrophil activation, in vitro. The fMLP-induced increases in CD11b and CD18 expression were also inhibited by plaunotol in vitro. Plaunotol inhibited monocytic production of TNF-alpha, a potent activator of neutrophils. Both gastric mucosal injury and gastric neutrophil infiltration in rats given indomethacin were significantly inhibited by the oral administration of plaunotol. CONCLUSIONS: Plaunotol inhibits indomethacin-induced gastric mucosal injury, at least in part by inhibiting neutrophil activation.  (+info)

Anti-ulcerogenic properties of endothelin receptor antagonists in the rat. (44/4263)

BACKGROUND: Endothelins have been implicated in gastric mucosal damage in a variety of animal models. Exogenous ET-1 and ET-3 are causally associated with experimental gastric ulcers. Furthermore, clinical reports also show elevated plasma and gastric mucosal endothelin-1 levels in patients suffering from peptic ulcers. AIM: To study the possibility that endothelin receptor antagonists may have beneficial effects and prevent the development of gastric ulcers. We have tested in rats the orally-active endothelin antagonist bosentan (Ro 47-0203) and Ro 48-5695, which is 10-30 times more potent than bosentan on endothelin receptors. METHODS: Water immersion restrained stress (WIRS) and indomethacin were used to provoke gastric mucosal damage. Endothelin receptor antagonists were administered orally prior to the induction of gastric damage. The gastric lesion index (mm), assessed macroscopically, and myeloperoxidase (MPO) activity were used as markers of the extent of mucosal injury. RESULTS: Bosentan at 100 and 30 mg/kg administered orally caused attenuation of gastric damage in the WIRS model by 58% and 42%, respectively. Bosentan also caused complete reduction of MPO activity. In indomethacin-induced gastric damage, 100 mg/kg bosentan attenuated gastric damage by 45% and 61% as measured by the gastric lesion index and MPO activity respectively. Ro 48-5695 was at least 30 times more potent than bosentan in reducing indomethacin-induced mucosal damage and at 3 mg/kg, caused a decrease of 49% in the gastric lesion index and a reduction in MPO activity of 41%. Bosentan and Ro 48-5695 possess weak antisecretory properties as tested in the mouse gastric gland assay, than cannot, alone, account for their anti-ulcer properties. CONCLUSIONS: Both endothelin receptor antagonists prevented the development of gastric mucosal injury in the rat. Disturbances in the gastric microcirculation are responsible for the development of experimental gastric ulcers. The anti-ulcer properties of these two endothelin antagonists suggest possible new therapeutic approaches to controlling gastric inflammation.  (+info)

Growth stimulation and induction of epidermal growth factor receptor by overexpression of cyclooxygenases 1 and 2 in human colon carcinoma cells. (45/4263)

There are two isoforms of cyclooxygenase (COX), COX-1 and COX-2. Recent epidemiological and experimental studies indicated a close relationship between COXs and the pathogenesis of colorectal cancer. The purpose of this study was to investigate the possible roles of both isoforms in the proliferation of colon carcinoma cells. A human colon carcinoma cell line, COLO 320DM, was transfected with an eukaryotic expression vector carrying cDNA of either COX-1 or COX-2, the expression of which was driven by a powerful elongation factor-1alpha promoter in pEF-BOS. Both COX-1- and COX-2-expressing cells possessed a similar enzyme activity, 8-10 nmol/10 min per mg protein. Growth rates of both cell lines were stimulated by about 2-fold during a course of culture for 7 days as compared with mock-transfected cells. Although COX-1 and COX-2 are believed to have fundamentally different biological roles, essentially no differences in growth stimulation were observed between the COX-1 and COX-2 overexpressions in our experiments. The reason may be explained by high levels of COX expression, and subtle differences between the both cell lines would be possibly apparent by lower expression levels. The stimulated growth of the COX-transfected cells was accompanied by increased DNA synthesis as assessed by [3H]thymidine incorporation. Furthermore, expression of epidermal growth factor receptor was markedly increased in these cells as examined by reverse transcription-polymerase chain reaction. A COX inhibitor, indomethacin, suppressed the stimulated growth, increased DNA synthesis and induction of epidermal growth factor receptor in COX-1- and COX-2-transfected cells.  (+info)

IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. (46/4263)

IL-17 is a newly discovered T cell-derived cytokine whose role in osteoclast development has not been fully elucidated. Treatment of cocultures of mouse hemopoietic cells and primary osteoblasts with recombinant human IL-17 induced the formation of multinucleated cells, which satisfied major criteria of osteoclasts, including tartrate-resistant acid phosphatase activity, calcitonin receptors, and pit formation on dentine slices. Direct interaction between osteoclast progenitors and osteoblasts was required for IL-17-induced osteoclastogenesis, which was completely inhibited by adding indomethacin or NS398, a selective inhibitor of cyclooxgenase-2 (COX-2). Adding IL-17 increased prostaglandin E2 (PGE2) synthesis in cocultures of bone marrow cells and osteoblasts and in single cultures of osteoblasts, but not in single cultures of bone marrow cells. In addition, IL-17 dose-dependently induced expression of osteoclast differentiation factor (ODF) mRNA in osteoblasts. ODF is a membrane-associated protein that transduces an essential signal(s) to osteoclast progenitors for differentiation into osteoclasts. Osteoclastogenesis inhibitory factor (OCIF), a decoy receptor of ODF, completely inhibited IL-17-induced osteoclast differentiation in the cocultures. Levels of IL-17 in synovial fluids were significantly higher in rheumatoid arthritis (RA) patients than osteoarthritis (OA) patients. Anti-IL-17 antibody significantly inhibited osteoclast formation induced by culture media of RA synovial tissues. These findings suggest that IL-17 first acts on osteoblasts, which stimulates both COX-2-dependent PGE2 synthesis and ODF gene expression, which in turn induce differentiation of osteoclast progenitors into mature osteoclasts, and that IL-17 is a crucial cytokine for osteoclastic bone resorption in RA patients.  (+info)

Hemodynamic changes induced by liposomes and liposome-encapsulated hemoglobin in pigs: a model for pseudoallergic cardiopulmonary reactions to liposomes. Role of complement and inhibition by soluble CR1 and anti-C5a antibody. (47/4263)

BACKGROUND: Intravenous administration of some liposomal drugs can trigger immediate hypersensitivity reactions that include symptoms of cardiopulmonary distress. The mechanism underlying the cardiovascular changes has not been clarified. METHODS AND RESULTS: Anesthetized pigs (n=18) were injected intravenously with 5-mg boluses of large multilamellar liposomes, and the ensuing hemodynamic, hematologic, and laboratory changes were recorded. The significant (P<0.01) alterations included 79+/-9% (mean+/-SEM) rise in pulmonary arterial pressure, 30+/-7% decline in cardiac output, 11+/-2% increase in heart rate, 236+/-54% increase in pulmonary vascular resistance, 71+/-27% increase in systemic vascular resistance, and up to a 100-fold increase in plasma thromboxane B2. These changes peaked between 1 and 5 minutes after injection, subsided within 10 to 20 minutes, were lipid dose-dependent (ED50=4. 5+/-1.4 mg), and were quantitatively reproducible in the same animal several times over 7 hours. The liposome-induced rises of pulmonary arterial pressure showed close quantitative and temporal correlation with elevations of plasma thromboxane B2 and were inhibited by an anti-C5a monoclonal antibody (GS1), by sCR1, or by indomethacin. Liposomes caused C5a production in pig serum in vitro through classic pathway activation and bound IgG and IgM natural antibodies. Zymosan- and hemoglobin-containing liposomes and empty liposomes caused essentially identical pulmonary changes. CONCLUSIONS: The intense, nontachyphylactic, highly reproducible, complement-mediated pulmonary hypertensive effect of minute amounts of intravenous liposomes in pigs represents a unique, unexplored phenomenon in circulation physiology. The model provides highly sensitive detection and study of cardiopulmonary side effects of liposomal drugs and many other pharmaceutical products due to "complement activation-related pseudoallergy" (CARPA).  (+info)

Role of nitric oxide in indomethacin-induced gastric mucosal dysfunction in the rat. (48/4263)

The present study was undertaken to explore the role of nitric oxide (NO) in the pathogenesis of experimental non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy. We assessed the role of NO inhibition and donation in indomethacin-induced gastric mucosal dysfunction. The stomach was perfused with vehicle (control) for 20 min, followed by indomethacin (10 mg ml-1 in 1 25 % sodium bicarbonate, pH 8 4) for 120 min. NG-nitro-L-arginine methyl ester (L-NAME, 5 and 10 mg kg-1, I.V. bolus), L-arginine, D-arginine (100 mg kg-1 I.V. bolus, 10 mg kg-1 h-1, 2 h infusion) and the NO donor glyceryl trinitrate (GTN) were given at the same time (20, 40 and 80 microg kg-1 min-1, 15 min infusion) as perfusion with indomethacin was started. Epithelial permeability was quantified by measuring blood-to-lumen clearance of 51Cr-labelled EDTA. Indomethacin caused a 20-fold increase in 51Cr-EDTA leakage compared with that of the control group. Treatment with L-NAME or L-arginine did not affect the indomethacin-induced alterations in mucosal permeability. Administration of GTN (20 microg kg-1 min-1) significantly reduced the indomethacin-induced mucosal dysfunction. By contrast, higher doses of GTN (80 microg kg-1 min-1) exacerbated epithelial dysfunction induced by indomethacin. Elevated levels of carbonyls and myeloperoxidase (MPO) observed after indomethacin administration were significantly reduced, to the control values, when GTN (20 microg kg-1 min-1) was administered along with indomethacin. These data suggest that NO from exogenous sources can exert a dual action on the integrity of the gastric mucosa challenged by indomethacin. Low doses of GTN can prevent mucosal dysfunction induced by indomethacin, while higher doses of GTN may exacerbate the increases in epithelial permeability.  (+info)