6-Aminohexanoic acid as a chemical chaperone for apolipoprotein(a). (1/259)

Apolipoprotein (a) (apo(a)) is a component of the atherogenic lipoprotein, Lp(a). The efficiency with which apo(a) escapes the endoplasmic reticulum (ER) and is secreted by the liver is a major determinant of plasma Lp(a) levels. Apo(a) contains a series of domains homologous to plasminogen kringle (K) 4, each of which possesses a potential lysine-binding site. By using primary mouse hepatocytes expressing a 17K4 human apo(a) protein, we found that high concentrations (25-200 mM) of the lysine analog, 6-aminohexanoic acid (6AHA), increased apo(a) secretion 8-14-fold. This was accompanied by a decrease in apo(a) presecretory degradation. 6AHA inhibited accumulation of apo(a) in the ER induced by the proteasome inhibitor, lactacystin. Thus, 6AHA appeared to inhibit degradation by increasing apo(a) export from the ER. Significantly, 6AHA overcame the block in apo(a) secretion induced by the ER glucosidase inhibitor, castanospermine. 6AHA may therefore circumvent the requirement for calnexin and calreticulin interaction in apo(a) secretion. Sucrose gradients and a gel-based folding assay were unable to detect any influence of 6AHA on apo(a) folding. However, non-covalent or small, disulfide-dependent changes in apo(a) conformation would not be detected in these assays. Proline also increased the efficiency of apo(a) secretion. We propose that 6AHA and proline can act as chemical chaperones for apo(a).  (+info)

Suppression of murine endotoxic shock by sPLA2 inhibitor, indoxam, through group IIA sPLA2-independent mechanisms. (2/259)

Endotoxic shock is a systemic inflammatory process, involving a variety of proinflammatory mediators. Two types of secretory phospholipase A2 (sPLA2) have been implicated in this process. Group IB sPLA2 (PLA2-IB) binds to the PLA2 receptor (PLA2R), and PLA2R-deficient mice exhibit resistance to endotoxin-induced lethality with reduced plasma levels of proinflammatory cytokines, such as TNF-alpha. Group IIA sPLA2 (PLA2-IIA) is found in many tissues and cell types, and local and systemic levels are elevated under numerous inflammatory conditions including sepsis. In this study, we investigated the effect of a specific sPLA2 inhibitor, indoxam, on murine endotoxic shock. Indoxam suppressed the elevation of plasma TNF-alpha with a similar potency in PLA2-IIA-expressing and PLA2-IIA-deficient mice after LPS challenge. In PLA2-IIA-deficient mice, indoxam also suppressed the elevation of plasma IL-1beta, IL-6 and NO, and prolonged survival after LPS challenge. Indoxam was found to block the PLA2-IB binding to murine PLA2R with a high potency (Ki=30 nM). The inhibitory effects of indoxam on the LPS-induced elevation of plasma TNF-alpha levels could not be observed in mice deficient in PLA2R. These findings suggest that indoxam blocks the production of proinflammatory cytokines during endotoxemia through PLA2-IIA-independent mechanisms, possibly via blockade of the PLA2R function.  (+info)

Use of inhibitors to characterize intermediates in the processing of N-glycans synthesized by insect cells: a metabolic study with Sf9 cell line. (3/259)

The most frequent type of N-glycan synthesized by lepidopteran Sf9 cells appears to be fucosylated Man3GlcNAc2,and this has been a limitation for a large scale production and utilization of therapeutic glycoproteins in cultured insect cells. The current knowledge of the protein glycosylation pathway derived from structural studies on recombinant glyco-proteins expressed by using baculovirus vectors. In this work we provide more direct evidence for the sequential events occurring in the processing of endogenous N-glycoproteins of noninfected Sf9 cells. By metabolic labeling with radioactive mannose, we characterized the glycan structures which accumulated in the presence of processing inhibitors (castanospermine and swainsonine) and in the presence of an intracellular trafficking inhibitor (monensin). We thus demonstrated that from the glycan precursor Glc3Man9GlcNAc2 to GlcNAcMan5(Fuc)GlcNAc2 intermediate, the processing pathway in Sf9 cells paralleled the one demonstrated in mammalian cells. By using monensin, we demonstrated the formation of Man3(Fuc)GlcNAc2 from GlcNAcMan3(Fuc)GlcNAc2, a reaction which has not been described in mammalian cells. Our results support the idea that the hexosaminidase activity is of physiological relevance to the glycosylation pathway and is Golgi located.  (+info)

High-mannose type oligosaccharide-dependent apoptosis in U937 cells induced by pradimicin, a mannose-binding antibiotic. (4/259)

Cell surface oligosaccharides play a role in a variety of biological events such as cell adhesion and signal transduction. We have shown that BMY-28864, a semi-synthetic analog of pradimicin, induced apoptosis of U937 cells which had been incubated with 1-deoxymannojirimycin, an inhibitor of mannosidase I. BMY-28864 was not cytotoxic to the cells which had been cultivated with other glycosidase inhibitors such as castanospermine and swainsonine. We thus propose that BMY-28864 induces apoptosis by acting on a specific mannose-rich oligosaccharide, presumably (Man)9(GlcNAc)2+.  (+info)

Differential role of mannose and glucose trimming in the ER degradation of asialoglycoprotein receptor subunits. (5/259)

To gain insight into how sugar chain processing events modulate endoplasmic reticulum (ER)/proteasomal degradation we looked at human asialoglycoprotein receptor polypeptides H2a and H2b, variants which differ only by an extra pentapeptide (EGHRG) present in H2a. Membrane-bound H2a is a precursor of a soluble secreted form while H2b reaches the plasma membrane. Uncleaved precursor H2a molecules are completely retained in the ER and degraded as well as a portion of H2b. Inhibition of N-linked sugar chain mannose trimming stabilized both variants. In contrast, inhibition of glucose trimming with castanospermine greatly enhanced the degradation rate of H2a but not that of H2b. We studied a possible involvement of the ER chaperone calnexin, as inhibitors of glucose trimming are known to prevent calnexin binding. Incubation of cells with low concentrations of castanospermine (30 microg/ml) did not interfere with calnexin binding to H2a while causing the same accelerated degradation as high concentrations (>100 microg/ml) which did inhibit the association. Castanospermine treatment after calnexin binding blocked the dissociation of the chaperone but still caused accelerated degradation. The increased degradation could be blocked by a specific proteasome inhibitor, ZL(3)VS. Our results suggest that extensive mannose trimming or retention of glucose residues due to lack of glucose trimming are signals for ER/proteasomal degradation independent of interaction with calnexin.  (+info)

Analysis of the early biogenesis of CD1b: involvement of the chaperones calnexin and calreticulin, the proteasome and beta(2)-microglobulin. (6/259)

beta(2)-Microglobulin (beta(2)m)-associated human CD1b proteins present lipid and glycolipid antigens, which are loaded on CD1b in endosomal compartments. In contrast, the related MHC class I molecules acquire antigenic peptides in the endoplasmic reticulum. Here, we investigated the biogenesis of CD1b before beta(2)m binding in comparison to MHC class I. In beta(2)m-deficient FO-1 cells, we found CD1b heavy chains (HC) complexed with the chaperones calnexin and calreticulin, while MHC class I HC associated only with calnexin. Despite this difference, both CD1b HC and MHC class I HC were degraded when the chaperone interactions were prevented by the glucosidase inhibitor castanospermine. The degradation of both molecules included the proteasome and mannosidases. Chaperone-unassociated CD1b could be rescued from degradation by supplementing FO-1 cells with beta(2)m. Finally, prevention of chaperone interaction significantly reduced neoexpression of CD1b upon differentiation of monocytes to dendritic cells, underlining the importance of chaperones for proper expression of CD1b under physiological conditions.  (+info)

Kinetics of interactions of sendai virus envelope glycoproteins, F and HN, with endoplasmic reticulum-resident molecular chaperones, BiP, calnexin, and calreticulin. (7/259)

Sendai virus envelope glycoproteins, F and HN, mature during their transport through the endoplasmic reticulum (ER) and Golgi complex. To better understand their maturation processes in the ER, we investigated the time course of their interactions with three ER- resident molecular chaperones, BiP, calnexin (CNX), and calreticulin (CRT), in Sendai virus-infected HeLa cells. Pulse-chase and immunoprecipitation analyses using antibodies against each virus glycoprotein or ER chaperone revealed that F precursor interacted with CNX transiently (t(1/2)=8 min), while HN protein displayed longer and sequential interactions with BiP (t(1/2)=8 min), CNX (t(1/2)=15 min), and CRT (t(1/2)=20 min). HN interacted with the three ER chaperones not only as a monomer but also as a tetramer for several hours, suggesting mechanism(s) to undergo chaperone-mediated quality control of an assembled HN oligomer in the ER. The kinetics of dissociation of the HN-chaperone complexes exhibited a marked delay in the presence of proteasome inhibitors, suggesting that a part of HN associated with BiP, CNX, and CRT is destined to be degraded in the proteasome-dependent pathway. Further, the associations between virus glycoproteins and CNX or CRT were impaired by castanospermine, an inhibitor of ER glucosidase I and II, confirming that these interactions require monoglucosylated oligosaccharide on F(0) and HN peptides. These findings together suggest that newly synthesized F protein undergoes rapid maturation in the ER through a transient interaction with CNX, whereas HN protein requires more complex processes involving prolonged association with BiP, CNX, and CRT for its quality control in the ER.  (+info)

Alpha-glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. (8/259)

We report that endoplasmic reticulum alpha-glucosidase inhibitors have antiviral effects on dengue (DEN) virus. We found that glucosidase inhibition strongly affects productive folding pathways of the envelope glycoproteins prM (the intracellular glycosylated precursor of M [membrane protein]) and E (envelope protein): the proper folding of prM bearing unprocessed N-linked oligosaccharide is inefficient, and this causes delayed formation of prME heterodimer. The complexes formed between incompletely folded prM and E appear to be unstable, leading to a nonproductive pathway. Inhibition of alpha-glucosidase-mediated N-linked oligosaccharide trimming may thus prevent the assembly of DEN virus by affecting the early stages of envelope glycoprotein processing.  (+info)