Alterations in cell death and cell cycle progression in the UV-irradiated epidermis of bcl-2-deficient mice. (41/5854)

The effect of bcl-2 gene ablation on epidermal cell death induced by UV-B irradiation was investigated in mice. Exposure of depilated back skin of bcl-2-/- mice to 0.5 J/cm2 UV-B caused a prolonged increase in the number of epidermal cells showing nuclear DNA fragmentation compared to wild-type littermates. Consistently, skin explants from bcl-2-deficient mice exhibited a higher number of sunburn cells per cm epidermis (16.6+/-2.1 vs 7.0+/-1.5) following exposure to 0.1 J/cm2 UV-B in vitro. Furthermore, UV irradiation failed to increase pre-melanosomes in skin explants from mutant animals, and primary menalocyte cultures derived from bcl-2 null mutants were highly susceptible to UV-induced cell death compared to cultures from wild-type littermates. An accelerated reappearance of proliferating cells, showing nuclear immunoreactivity for Ki-67 and c-Fos, was observed in the UV-irradiated epidermis of bcl-2-deficient mice. Taken together, these findings suggest that effects of UV radiation on epidermal cell death and cell cycle progression are influenced by survival-promoting Bcl-2.  (+info)

Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. (42/5854)

In sepsis there is extensive apoptosis of lymphocytes, which may be beneficial by down-regulating the accompanying inflammation. Alternatively, apoptosis may be detrimental by impairing host defense. We studied whether Bcl-2, a potent antiapoptotic protein, could prevent lymphocyte apoptosis in a clinically relevant model of sepsis. Transgenic mice in which Bcl-2 was overexpressed in T cells had complete protection against sepsis-induced T lymphocyte apoptosis in thymus and spleen. Surprisingly, there was also a decrease in splenic B cell apoptosis in septic Bcl-2 overexpressors compared with septic HeJ and HeOuJ mice. There were marked increases in TNF-alpha, IL-1beta, and IL-10 in thymic tissue in sepsis in the three species of mice, and the increase in TNF-alpha and IL-10 in HeOuJ mice was greater than that in Bcl-2 mice. Mitotracker, a mitochondrial membrane potential indicator, demonstrated a sepsis-induced loss of membrane potential in T cells in HeJ and HeOuJ mice but not in Bcl-2 mice. Importantly, Bcl-2 overexpressors also had improved survival in sepsis. To investigate the potential impact of loss of lymphocytes on survival in sepsis, Rag-1-/- mice, which are totally deficient in mature T and B cells, were also studied. Rag-1-/- mice had decreased survival compared with immunologically normal mice with sepsis. We conclude that overexpression of Bcl-2 provides protection against cell death in sepsis. Lymphocyte death may be detrimental in sepsis by compromising host defense.  (+info)

Hypersensitivity to seizures in beta-amyloid precursor protein deficient mice. (43/5854)

Secreted forms of the beta-amyloid precursor protein (beta-APP) have neuroprotective properties in vitro and may be involved in the containment of neuronal excitation. To test whether loss of secreted forms of beta-APP (sAPPs) may enhance excitotoxic responses, we injected mice homozygous for a targeted mutation of the beta-APP gene (beta-APPDelta/Delta) intraperitoneally with kainic acid. We found that in these mice, kainic acid induced seizures initiated earlier, and acute mortality was enhanced compared to isogenic wild-type mice independently from the callosal agenesis phenotype observed to occur at increased frequency in APP mutant mice. Expression of c-fos in cortex and cingulate gyrus was enhanced in beta-APPDelta/Delta mice, although the amount of structural damage and apoptosis in the hippocampal pyramidal cell layer and cortex was similar to that of controls. When cerebellar granule cell cultures and cortical neuronal cultures were challenged with glutamate receptor agonists, the rates of cell death and apoptosis of beta-APPDelta/Delta mice were indistinguishable from those of controls. Therefore, deficiency of sAPPs causes facilitation of seizure activity in the absence of enhanced cell death. Since enhanced seizures were observed also in mice homozygous for a deletion of the entire beta-APP gene, this phenotype results from a loss of APP rather than from a dominant effect of APPDelta.  (+info)

Extended therapeutic window for caspase inhibition and synergy with MK-801 in the treatment of cerebral histotoxic hypoxia. (44/5854)

In rats, striatal histotoxic hypoxic lesions produced by the mitochondrial toxin malonate resemble those of focal cerebral ischemia. Intrastriatal injections of malonate induced cleavage of caspase-2 beginning at 6 h, and caspase-3-like activity as identified by DEVD biotin affinity-labeling within 12 h. DEVD affinity-labeling was prevented and lesion volume reduced in transgenic mice overexpressing BCL-2 in neuronal cells. Intrastriatal injection of the tripeptide, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a caspase inhibitor, at 3 h, 6 h, or 9 h after malonate injections reduced the lesion volume produced by malonate. A combination of pretreatment with the NMDA antagonist, dizocilpine (MK-801), and delayed treatment with zVAD-fmk provided synergistic protection compared with either treatment alone and extended the therapeutic window for caspase inhibition to 12 h. Treatment with cycloheximide and zVAD-fmk, but not with MK-801, blocked the malonate-induced cleavage of caspase-2. NMDA injections alone resulted in a weak caspase-2 cleavage. These results suggest that malonate toxicity induces neuronal death by more than one pathway. They strongly implicate early excitotoxicity and delayed caspase activation in neuronal loss after focal ischemic lesions and offer a new strategy for the treatment of stroke.  (+info)

Endostatin induces endothelial cell apoptosis. (45/5854)

Endostatin, a carboxyl-terminal fragment of collagen XVIII, has been shown to regress tumors in mice. In this study, we have analyzed the mechanism of endostatin action on endothelial cells and nonendothelial cells. Endostatin treatment of cow pulmonary artery endothelial cells caused apoptosis, as demonstrated by three methods, annexin V-fluorescein isothiocyanate staining, caspase 3, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling assay. Moreover, addition of endostatin led to a marked reduction of the Bcl-2 and Bcl-XL anti-apoptotic protein, whereas Bax protein levels were unaffected. These effects were not seen in several nonendothelial cells. Collectively, these findings provide important mechanistic insight into endostatin action.  (+info)

Effect of targeted expression of clusterin in photoreceptor cells on retinal development and differentiation. (46/5854)

Clusterin expression is increased in tissues undergoing apoptosis, including neurodegenerative retina, but the causal relationships remain to be clarified. To test the hypothesis that overexpression of clusterin could induce apoptosis in neurons, transgenic mice were generated in which rat clusterin transgene was expressed in photoreceptor cells under the transcriptional control of the human interphotoreceptor retinoid-binding protein (IRBP) promoter. Photoreceptor cell death in the resulting transgenic mice was examined by histology and TUNEL techniques. The expression of the clusterin transgene was confirmed by in situ hybridization in the photoreceptor cells, and results in a complex pattern of clusterin protein distribution in the retina. A reduction in apoptotic staining in the transgenic retinas was observed from birth to postnatal day 15. These results suggest that clusterin is not causally involved in apoptotic mechanisms of photoreceptor cell death, but may relate to cytoprotective functions.  (+info)

Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. (47/5854)

Circulating endothelial cells (CECs) have been detected in association with endothelial injury and therefore represent proof of serious damage to the vascular tree. Our aim was to investigate, using the technique of immunomagnetic separation, whether the pathological events in unstable angina (UA) or acute myocardial infarction (AMI) could cause desquamation of endothelial cells in circulating blood compared with effort angina (EA) and noncoronary chest pain. A high CEC count was found in AMI (median, 7.5 cells/mL; interquartile range, 4.1 to 43.5, P <.01 analysis of variance [ANOVA]) and UA (4.5; 0.75 to 13.25 cells/mL, P <.01) within 12 hours after chest pain as compared with controls (0; 0 to 0 cells/mL) and stable angina (0; 0 to 0 cells/mL). CEC levels in serial samples peaked at 15.5 (2.7 to 39) cells/mL 18 to 24 hours after AMI (P <.05 repeated measures ANOVA), but fell steadily after UA. Regardless of acute coronary events, the isolated cells displayed morphologic and immunologic features of vascular endothelium. The CECs were predominantly of macrovascular origin. They did not express the activation markers intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin, although some were positive for tissue factor. CECs failed to exhibit characteristics of apoptosis (TUNEL assay) excluding this event as a possible mechanism of cell detachment. The presence of CECs provides direct evidence of endothelial injury in AMI and UA, but not in stable angina, confirming that these diseases have different etiopathogenic mechanisms.  (+info)

Mechanisms underlying aortic dilatation in congenital aortic valve malformation. (48/5854)

BACKGROUND: The high incidence of aortic disease in subjects with congenital aortic valve malformations suggests a causative relationship between these 2 conditions. The histological observation in aortic dilatation/aneurysm/dissection is Erdheim cystic medial necrosis (CMN), a noninflammatory loss of smooth muscle cells (SMCs), fragmentation of elastic fibers, and mucoid degeneration. METHODS AND RESULTS: To examine whether apoptosis is 1 of the mechanisms underlying CMN and aortic medial layer SMC loss, ascending aortic wall specimens from 32 patients were collected at cardiothoracic surgery and examined by histochemical staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling. From echocardiography results, 4 groups of patients were identified: bicuspid valve carriers with (bi/dil) or without (bi/0) aortic dilatation and tricuspid valve carriers with (tri/dil) or without (tri/0) aortic dilatation. Massive focal apoptosis was observed in the medial layers of bi/dil (mean apoptotic index [mAI], 8.1+/-6.0) and tri/dil (mAI, 8.1+/-8.3) compared with tri/0 (mAI, 0.9+/-1.2; P=0.0079 and P=0.037). In bi/0 (mAI, 9.1+/-5.7) compared with tri/0 (mAI, 0.9+/-1.2), rates of medial SMC apoptosis were increased (P=0.0025). Bi/dil (mean age, 40. 6+/-15.7 years) were significantly younger than tri/dil (mean age, 56.4+/-12.8 years) undergoing the same operation (P=0.0123). CONCLUSIONS: Premature medial layer SMC apoptosis could be part of a genetic program underlying aortic disease in patients with aortic valve malformations.  (+info)