Proteinuria induces tubular cell turnover: A potential mechanism for tubular atrophy. (33/18351)

BACKGROUND: Proteinuria and tubular atrophy have both been closely linked with progressive renal failure. We hypothesized that apoptosis may be induced by tubular cell exposure to heavy proteinuria, potentially leading to tubular atrophy. Apoptosis was studied in a rat model of "pure" proteinuria, which does not induce renal impairment, namely protein-overload proteinuria. METHODS: Adult female Lewis rats underwent intraperitoneal injection of 2 g of bovine serum albumin (BSA, N = 16) or sham saline injections (controls, N = 8) daily for seven days. Apoptosis was assessed at day 7 in tissue sections using in situ end labeling (ISEL) and electron microscopy. ISEL-positive nuclei (apoptotic particles) were counted in blinded fashion using image analysis with NIH Image. Cell proliferation was assessed by detection of mRNA for histone by in situ hybridization, followed by counting of positive cells using NIH Image. RESULTS: Animals injected with saline showed very low levels of apoptosis on image analysis. BSA-injected rats had heavy proteinuria and showed both cortical and medullary apoptosis on ISEL. This was predominantly seen in the tubules and, to a lesser extent, in the interstitial compartment. Overall, the animals injected with BSA showed a significant 30-fold increase in the number of cortical apoptotic particles. Electron microscopy of tubular cells in a BSA-injected animal showed a progression of ultrastructural changes consistent with tubular cell apoptosis. The BSA-injected animals also displayed a significant increase in proximal tubular cell proliferation. This increased proliferation was less marked than the degree of apoptosis. CONCLUSION: Protein-overload proteinuria in rats induces tubular cell apoptosis. This effect is only partially balanced by proliferation and potentially provides a direct mechanism whereby heavy proteinuria can induce tubular atrophy and progressive renal failure.  (+info)

Effects of phosphate intake on distribution of type II Na/Pi cotransporter mRNA in rat kidney. (34/18351)

BACKGROUND: Renal phosphate (Pi) reabsorption is regulated by dietary Pi intake, as well as in other ways. Changes in Pi reabsorption are associated with the modulation of sodium/Pi cotransporter type II (NaPi-2) protein abundance in the brush border membrane (BBM) of proximal tubules (PTs) and of renal NaPi-2 mRNA levels. In this study, we address whether the NaPi-2 protein and NaPi-2 mRNA distribution patterns in the renal cortex vary in parallel with changes of dietary Pi intake. METHODS: We investigated in cryosections of perfusion-fixed rat kidneys by in situ hybridization (ISH) and immunohistochemistry (IHC) the distribution patterns of NaPi-2 mRNA and of NaPi-2 protein one week, two hours, and four hours after changes in dietary Pi intake. RESULTS: NaPi-2 mRNA and NaPi-2 protein were present in PTs exclusively. In rats adapted to one week of high Pi intake, signals for NaPi-2 mRNA and NaPi-2 protein in cortical PTs were weak, except in the convoluted parts of PTs of juxtamedullary nephrons. After one week of low Pi intake, the ISH and IHC signals for NaPi-2 were high in PT segments in all cortical levels. The switch from a chronic high to a low Pi intake within two and four hours induced no increase and a slight increase, respectively, in the NaPi-2 mRNA signal in PTs of midcortical and of superficial nephrons, whereas in the BBM of these nephrons, NaPi-2 protein was markedly up-regulated. Two and four hours after switching from low to high Pi intake, the overall high ISH signal for NaPi-2 mRNA was unchanged, whereas NaPi-2 protein staining was drastically down-regulated in the BBM of PTs from superficial and midcortical nephrons. CONCLUSIONS: The marked changes in NaPi-2 protein abundance in the BBM, following altered dietary Pi intake, precede corresponding changes at the RNA level by several hours. Thus, the early adaptation to altered Pi intake involves mRNA-independent mechanisms. The up- or down-regulation of NaPi-2 protein abundance in the BBM and NaPi-2 mRNA in PT affects mainly midcortical and superficial nephrons.  (+info)

Retrotransposons transcribed preferentially in proximal tubules of salt-hypertensive rats. (35/18351)

BACKGROUND: The kidney is considered to play an important etiologic role in salt-sensitive hypertension. The aim of the present study was to isolate genes whose expression differs between the kidneys of salt-hypertensive and control rats using an mRNA differential display method. METHODS: Dahl salt-sensitive (DS) and control salt-resistant rats (DR) were fed a 0.3% or 8% NaCl diet. Renal RNA was amplified by RNA arbitrarily primed polymerase chain reaction (RAP-PCR) and compared among DR 0.3%, DR 8%, DS 0.3%, and DS 8%. Gene expression and localization were examined by Northern blotting, RNase protection assay, and in situ hybridization. Full-length nucleotide sequence was determined by screening a DS rat kidney cDNA library. RESULTS: We identified one differentially displayed clone, and its expression was greater in DS than DR, which was not affected by salt loading. The sequence was 90% homologous to the 3'-noncoding region of the nicotinic acetylcholine receptor alpha7 subunit gene. Its expression was kidney-specific, and was localized in the proximal tubules. The transcript level was markedly increased precedent to the development of hypertension. Its expression was also high in other salt-sensitive rats, and low in normotensive Sprague-Dawley and Wistar rats. The full-length cDNA contained elements homologous to the retroviral pol gene, a primer binding site sequence for reverse transcriptase, and long-terminal repeats. CONCLUSION: These results demonstrated that the newly identified transcripts (REPT1) belong to a novel retrotransposon family, which showed unique strain-, age-, tissue-, and cell type-specific expression pattern.  (+info)

Expression of the paired-box genes Pax-1 and Pax-9 in limb skeleton development. (36/18351)

Vertebrate Pax genes encode a family of transcription factors that play important roles in embryonic patterning and morphogenesis. Two closely related Pax genes, Pax-1 and Pax-9, are associated with early axial and limb skeleton development. To investigate the role of these genes in cartilage formation we have examined the expression profiles of Pax-1 and Pax-9 in developing chick limb mesenchyme in vivo and in vitro. Both transcripts are detected by reverse transcription polymerase chain reaction and Northern blotting throughout chick limb development, from the early bud stages (Hamburger-Hamilton 20-23) to fully patterned appendages (stage 30). Whole-mount in situ hybridization reveals complex, nonoverlapping expression domains of these two genes. Pax-1 transcripts first appear at the anterior proximal margin of the limb buds, while Pax-9 is expressed more distally at what will be the junction of the autopod and the zeugopod. In situ hybridization to serial sections of the girdles reveals that in the pectoral region Pax-1 is expressed proximally in condensed mesenchyme surrounding the junction of the developing scapula, humerus, and coracoid. In the pelvis, Pax-1 is expressed between the femur and the developing acetabulum and along the ventral edge of the ischium; this transcript was also found in the distal hindlimb along the posterior edge of the fibula. Pax-9 transcripts were not detected in the pectoral girdle at any stage, and only weakly in the pelvis along the ventral ischial margin. In the distal parts of both wings and legs, however, Pax-9 is strongly expressed between the anterior embryonic cartilages (e.g., distal radius or tibia) and the anterior ectodermal ridge. The expression of both genes was strongest in undifferentiated cells of precartilage condensations or at the margins of differentiated cartilages, and was absent from cartilage itself. In micromass cultures of chondrifying limb bud mesenchyme expression of Pax-1 and Pax-9 is maintained for up to 3 days in vitro, most strongly at the end of the culture period during chondrogenic differentiation. As seen in vivo, transcripts are found in loose mesenchyme cells at the outer margins of developing cartilage nodules, and are absent from differentiated chondrocytes at the nodule center. Taken together, these investigations extend previous studies of Pax-1 and Pax-9 expression in embryonic limb development while validating limb bud mesenchyme culture as an accessible experimental system for the study of Pax gene function and regulation. Our in vivo and in vitro observations are discussed with reference to 1) the relationship between somitic and limb expression of these two Pax genes, 2) what regulates this expression in different regions of the embryo, and 3) the putative cellular functions of Pax-1 and Pax-9 in embryonic skeletogenesis.  (+info)

Multiple cis-acting regulatory regions are required for restricted spatio-temporal Hoxa5 gene expression. (37/18351)

Genetic analyses have revealed the essential role of the murine Hoxa5 gene for the correct specification of the cervical and upper thoracic region of the skeleton, and for the normal organogenesis and function of the respiratory tract, both structures expressing Hoxa5 during embryogenesis. To understand how the expression domains of the Hoxa5 gene are established during development, we have analyzed the cis-acting control regions mediating Hoxa5 gene expression using a transgenic approach. Four transcripts are derived from the Hoxa5 locus. The shortest and most abundant one displays a specific spatio-temporal profile of expression at earlier stages and in more anterior structures along the embryonic axis than the larger forms. We established that an 11.1 kilobase pair (kb) genomic fragment, extending from position -3.8 kb to +7.3 kb relative to Hoxa5 transcription initiation site, was sufficient to reproduce the temporal expression and substantially reconstitute the spatial pattern of the major Hoxa5 transcript. By deletion analyses, we identified a 2.1 kb fragment located downstream of the Hoxa5 gene that possesses mesodermal enhancer activity. Overall, the findings demonstrate that cis-acting regulatory elements essential for the correct expression of the major Hoxa5 transcript are located both upstream and downstream of the Hoxa5 coding sequences.  (+info)

Ectopic expression of the transforming growth factor beta type II receptor disrupts mesoderm organisation during mouse gastrulation. (38/18351)

Transforming growth factor beta (TGFbeta) regulates the cell cycle and extracellular matrix (ECM) deposition of many cells in vitro. We have analysed chimaeric mouse embryos generated from embryonic stem cells with abnormal receptor expression to study the effect of TGFbeta on these processes in vivo and the consequences for normal development. The binding receptor for TGFbeta, TbetaRII, is first detected in the embryo proper around day 8.5 in the heart. Ectopic expression of TbetaRII from the blastocyst stage onward resulted in an embryonic lethal around 9.5 dpc. Analysis of earlier stages revealed that the primitive streak of TbetaRII chimaeras failed to elongate. Furthermore, although cells passed through the streak and initially formed mesoderm, they tended to accumulate within the streak. These defects temporally and spatially paralleled the expression of the TGFbeta type I receptor, which is first expressed in the node and primitive streak. We present evidence that classical TGFbeta-induced growth inhibition was probably the cause of insufficient mesoderm being available for paraxial and axial structures. The results demonstrate that (1) TGFbeta mRNA and protein detected previously in early postimplantation embryos is present as a biologically active ligand; and (2) assuming that ectopic expression of TbetaRII results in no other changes in ES cells, the absence of TbetaRII is the principle reason why the embryo proper is unresponsive to TGFbeta ligand until after gastrulation.  (+info)

Selective expression of purinoceptor cP2Y1 suggests a role for nucleotide signalling in development of the chick embryo. (39/18351)

Responses to extracellular nucleotides (e.g., ATP, ADP, etc.) have been demonstrated in a number of embryonic cell types suggesting they may be important signalling molecules during embryonic development. Here the authors describe for the first time the expression of a G-protein-coupled receptor for extracellular ATP, chick P2Y1 (cP2Y1), during embryonic development of the chick. During the first 10 days of embryonic development, cP2Y1 is expressed in a developmentally regulated manner in the limb buds, mesonephros, brain, somites, and facial primordia, suggesting that this receptor may have a role in the development of each of these systems.  (+info)

In vivo NGF deprivation reduces SNS expression and TTX-R sodium currents in IB4-negative DRG neurons. (40/18351)

Recent evidence suggests that changes in sodium channel expression and localization may be involved in some pathological pain syndromes. SNS, a tetrodotoxin-resistant (TTX-R) sodium channel, is preferentially expressed in small dorsal root ganglion (DRG) neurons, many of which are nociceptive. TTX-R sodium currents and SNS mRNA expression have been shown to be modulated by nerve growth factor (NGF) in vitro and in vivo. To determine whether SNS expression and TTX-R currents in DRG neurons are affected by reduced levels of systemic NGF, we immunized adult rats with NGF, which causes thermal hypoalgesia in rats with high antibody titers to NGF. DRG neurons cultured from rats with high antibody titers to NGF, which do not bind the isolectin IB4 (IB4(-)) but do express TrkA, were studied with whole cell patch-clamp and in situ hybridization. Mean TTX-R sodium current density was decreased from 504 +/- 77 pA/pF to 307 +/- 61 pA/pF in control versus NGF-deprived neurons, respectively. In comparison, the mean TTX-sensitive sodium current density was not significantly different between control and NGF-deprived neurons. Quantification of SNS mRNA hybridization signal showed a significant decrease in the signal in NGF-deprived neurons compared with the control neurons. The data suggest that NGF has a major role in the maintenance of steady-state levels of TTX-R sodium currents and SNS mRNA in IB4(-) DRG neurons in adult rats in vivo.  (+info)