(1/9173) 11q23.1 and 11q25-qter YACs suppress tumour growth in vivo.

Frequent allelic deletion at chromosome 11q22-q23.1 has been described in breast cancer and a number of other malignancies, suggesting putative tumour suppressor gene(s) within the approximately 8 Mb deleted region. In addition, we recently described another locus, at the 11q25-qter region, frequently deleted in breast cancer, suggesting additional tumour suppressor gene(s) in this approximately 2 Mb deleted region. An 11q YAC contig was accessed and three YACs, one containing the candidate gene ATM at 11q23.1, and two contiguous YACs (overlapping for approximately 400-600 kb) overlying most of the 11q25 deleted region, were retrofitted with a G418 resistance marker and transfected into murine A9 fibrosarcoma cells. Selected A9 transfectant clones (and control untransfected and 'irrelevant' alphoid YAC transfectant A9 clones) were assayed for in vivo tumorigenicity in athymic female Balb c-nu/nu mice. All the 11q YAC transfectant clones demonstrated significant tumour suppression compared to the control untransfected and 'irrelevant' YAC transfected A9 cells. These results define two discrete tumour suppressor loci on chromosome 11q by functional complementation, one to a approximately 1.2 Mb region on 11q23.1 (containing the ATM locus) and another to a approximately 400-600 kb subterminal region on 11q25-qter.  (+info)

(2/9173) Deletion of a region that is a candidate for the difference between the deletion forms of hereditary persistence of fetal hemoglobin and deltabeta-thalassemia affects beta- but not gamma-globin gene expression.

The analysis of a number of cases of beta-globin thalassemia and hereditary persistence of fetal hemoglobin (HPFH) due to large deletions in the beta-globin locus has led to the identification of several DNA elements that have been implicated in the switch from human fetal gamma- to adult beta-globin gene expression. We have tested this hypothesis for an element that covers the minimal distance between the thalassemia and HPFH deletions and is thought to be responsible for the difference between a deletion HPFH and deltabeta-thalassemia, located 5' of the delta-globin gene. This element has been deleted from a yeast artificial chromosome (YAC) containing the complete human beta-globin locus. Analysis of this modified YAC in transgenic mice shows that early embryonic expression is unaffected, but in the fetal liver it is subject to position effects. In addition, the efficiency of transcription of the beta-globin gene is decreased, but the developmental silencing of the gamma-globin genes is unaffected by the deletion. These results show that the deleted element is involved in the activation of the beta-globin gene perhaps through the loss of a structural function required for gene activation by long-range interactions.  (+info)

(3/9173) Analysis of genomic integrity and p53-dependent G1 checkpoint in telomerase-induced extended-life-span human fibroblasts.

Life span determination in normal human cells may be regulated by nucleoprotein structures called telomeres, the physical ends of eukaryotic chromosomes. Telomeres have been shown to be essential for chromosome stability and function and to shorten with each cell division in normal human cells in culture and with age in vivo. Reversal of telomere shortening by the forced expression of telomerase in normal cells has been shown to elongate telomeres and extend the replicative life span (H. Vaziri and S. Benchimol, Curr. Biol. 8:279-282, 1998; A. G. Bodnar et al., Science 279:349-352, 1998). Extension of the life span as a consequence of the functional inactivation of p53 is frequently associated with loss of genomic stability. Analysis of telomerase-induced extended-life-span fibroblast (TIELF) cells by G banding and spectral karyotyping indicated that forced extension of the life span by telomerase led to the transient formation of aberrant structures, which were subsequently resolved in higher passages. However, the p53-dependent G1 checkpoint was intact as assessed by functional activation of p53 protein in response to ionizing radiation and subsequent p53-mediated induction of p21(Waf1/Cip1/Sdi1). TIELF cells were not tumorigenic and had a normal DNA strand break rejoining activity and normal radiosensitivity in response to ionizing radiation.  (+info)

(4/9173) Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: alpha1,3-d-mannoside beta1, 4-N-acetylglucosaminyltransferase.

A human cDNA for UDP- N -acetylglucosamine:alpha1,3-d-mannoside beta1,4- N- acetylglucosaminyltransferase (GnT-IV) was isolated from a liver cDNA library using a probe based on a partial cDNA sequence of the bovine GnT-IV. The cDNA encoded a complete sequence of a type II membrane protein of 535 amino acids which is 96% identical to the bovine GnT-IV. Transient expression of the human cDNA in COS7 cells increased total cellular GnT-IV activity 25-fold, demonstrating that this cDNA encodes a functional human GnT-IV. Northern blot analysis of normal tissues indicated that at least five different sizes of mRNA (9.7, 7.6, 5.1, 3.8, and 2.4 kb) forGnT-IV are expressed in vivo. Furthermore, these mRNAs are expressed at different levels between tissues. Large amounts of mRNA were detected in tissues harboring T lineage cells. Also, the promyelocytic leukemia cell line HL-60 and the lymphoblastic leukemia cell line MOLT-4 revealed abundant mRNA. Lastly, the gene was mapped at the locus on human chromosome 2, band q12 by fluorescent in situ hybridization.  (+info)

(5/9173) Insertion of excised IgH switch sequences causes overexpression of cyclin D1 in a myeloma tumor cell.

Oncogenes are often dysregulated in B cell tumors as a result of a reciprocal translocation involving an immunoglobulin locus. The translocations are caused by errors in two developmentally regulated DNA recombination processes: V(D)J and IgH switch recombination. Both processes share the property of joining discontinuous sequences from one chromosome and releasing intervening sequences as circles that are lost from progeny cells. Here we show that these intervening sequences may instead insert in the genome and that during productive IgH mu-epsilon switch recombination in U266 myeloma tumor cells, a portion of the excised IgH switch intervening sequences containing the 3' alpha-1 enhancer has inserted on chromosome 11q13, resulting in overexpression of the adjacent cyclin D1 oncogene.  (+info)

(6/9173) Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.

To screen pancreatic carcinomas for chromosomal aberrations we have applied molecular cytogenetic techniques, including fluorescent in situ hybridization, comparative genomic hybridization, and spectral karyotyping to a series of nine established cell lines. Comparative genomic hybridization revealed recurring chromosomal gains on chromosome arms 3q, 5p, 7p, 8q, 12p, and 20q. Chromosome losses were mapped to chromosome arms 8p, 9p, 17p, 18q, 19p, and chromosome 21. The comparison with comparative genomic hybridization data from primary pancreatic tumors indicates that a specific pattern of chromosomal copy number changes is maintained in cell culture. Metaphase chromosomes from six cell lines were analyzed by spectral karyotyping, a technique that allows one to visualize all chromosomes simultaneously in different colors. Spectral karyotyping identified multiple chromosomal rearrangements, the majority of which were unbalanced. No recurring reciprocal translocation was detected. Cytogenetic aberrations were confirmed using fluorescent in situ hybridization with probes for the MDR gene and the tumor suppressor genes p16 and DCC. Copy number increases on chromosome 20q were validated with a probe specific for the nuclear receptor coactivator AIB1 that maps to chromosome 20q12. Amplification of this gene was identified in six of nine pancreatic cancer cell lines and correlated with increased expression.  (+info)

(7/9173) Treponema brennaborense sp. nov., a novel spirochaete isolated from a dairy cow suffering from digital dermatitis.

A novel Treponema species was isolated from an ulcerative lesion of a cow suffering from digital dermatitis (DD), a disease which causes painful ulcerations along the coronary band. Among other anaerobic bacteria, high numbers of spirochaetes have been regularly found in DD lesions. Here data are presented of a spirochaete isolated from a DD ulcer. By chemotaxonomy, protein analysis and comparative 16S rDNA sequence analysis this isolate was classified as a treponeme that differed from all Treponema species described previously. The only isolate, DD5/3T, for which the name Treponema brennaborense is proposed, is designated the type strain of the novel species. The strain is a small, highly motile spirochaete that has two periplasmic flagella, one flagellum being attached at each cell pole. Strain DD5/3T exhibits alpha-glucosidase and N-acetyl-beta-glucosaminidase activity and growth is inhibited by rabbit serum. T. brennaborense was phylogenetically most closely related (89.5% 16S rRNA similarity) to Treponema maltophilum, an oral spirochaete isolated from a periodontitis patient.  (+info)

(8/9173) Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays.

Prostate cancer development and progression is driven by the accumulation of genetic changes, the nature of which remains incompletely understood To facilitate high-throughput analysis of molecular events taking place in primary, recurrent, and metastat prostate cancer, we constructed a tissue microarray containing small 0.6-mm cylindrical samples acquired from 371 formalin-fixed blocks, including benign prostatic hyperplasia (n = 32) and primary tumors (n = 223), as well as both locally recurrent tumors (n = 54) and metastases (n = 62) from patients with hormone-refractory disease. Fluorescence in situ hybridization (FISH) was applied to the analysis of consecutive tissue microarray sections with probes for five different genes. High-level (> or =3X) amplifications were very rare (<2%) in primary prostate cancers However, in metastases from patients with hormone-refractory disease, amplification of the androgen receptor gene was seen in 22%, MYC in 11%, and Cyclin-D1 in 5% of the cases. In specimens from locally recurrent tumors, the corresponding percentages were 23, 4, and 8%. ERBB2 and NMYC amplifications were never detected at any stage of prostate cancer progression. In conclusion, FISH to tissue microarray sections enables high-throughput analysis of genetic alterations contributing to cancer development and progression. Our results implicate a role for amplification of androgen receptor in hormonal therapy failure and that of MYC in the metastatic progression of human prostate cancer.  (+info)