Evaluation of individual and combined neurotoxicity of the immunosuppressants cyclosporine and sirolimus by in vitro multinuclear NMR spectroscopy. (65/11315)

Neurotoxicity, a crucial side effect of immunosuppressive therapy with cyclosporine, also has been demonstrated in vitro for sirolimus, a novel macrolide immunosuppressant, which is under clinical investigation in combination with cyclosporine. NMR spectroscopy was used to study the separate and combined effects of cyclosporine and sirolimus on cerebral metabolism, both in brain cells and in perfused rat brain slices. The high-energy phosphate metabolism was already affected significantly at cyclosporine concentrations as low as 100 micrograms/liter: phosphocreatine was reduced by 10 +/- 2% [half-maximal inhibition concentration (IC50) = 1850 +/- 600 micrograms/liter], and nucleoside triphosphate was reduced by 11 +/- 5% (IC50 = 1110 +/- 420 micrograms/liter; n = 4, P <.05). At 500 micrograms/liter cyclosporine, N-acetylaspartate and glutamate were decreased by 13 +/- 7% (IC50 = 1100 +/- 330 micrograms/liter) and 22 +/- 9% (IC50 = 360 +/- 220 micrograms/liter; n = 4, P <.05), respectively. As evaluated using an algorithm based on Loewe isobolograms, combination of cyclosporine and sirolimus resulted in a synergetic reduction of high-energy phosphate metabolites. Addition of sirolimus to the perfusion medium increased brain slice concentrations of cyclosporine. It is concluded that cyclosporine significantly reduced high-energy phosphate metabolism in brain tissue at in vivo relevant concentrations. Combination with sirolimus resulted in synergism, which, in part, is explained by a greater distribution of cyclosporine into the brain tissue in the presence of sirolimus.  (+info)

Characterization of T-cell repertoire of the bone marrow in immune-mediated aplastic anemia: evidence for the involvement of antigen-driven T-cell response in cyclosporine-dependent aplastic anemia. (66/11315)

To determine whether the antigen-driven T-cell response is involved in the pathogenesis of aplastic anemia (AA), we examined the complementarity-determining region 3 (CDR3) size distribution of T-cell receptor (TCR) beta-chain (BV) subfamilies in the bone marrow (BM) of untreated AA patients. AA patients who did not respond to immunosuppressive therapy and those who obtained unmaintained remission early after cyclosporine (CyA) or antithymocyte globulin (ATG) therapy exhibited essentially a normal CDR3 size pattern. In contrast, five patients who needed continuous administration of CyA to maintain remission exhibited a skewed CDR3 size pattern in a number (>40%) of BV subfamilies suggestive of clonal predominance. The skewing of CDR3 size distribution became less pronounced in one of the CyA-dependent patients when the patient achieved unmaintained remission after a 4-year therapy with CyA, whereas it persisted longer than 7 years in the other patient requiring maintenance therapy. Sequencing of BV15 cDNA for which the CDR3 size pattern exhibited apparent clonal predominance in all CyA-dependent patients showed high homology of the amino acid sequence of the CDR3 between two different patients. These findings indicate that antigen-driven expansion of T cells is involved in the pathogenesis of AA characterized by CyA-dependent recovery of hematopoiesis.  (+info)

Pituitary involvement by Wegener's granulomatosis: a report of two cases. (67/11315)

We describe two cases of pituitary involvement by Wegener's granulomatosis. At initial presentation, or during subsequent disease "flares," a pattern of pituitary abnormality was suggested. During periods of remission, we found the pituitary returned to a nearly normal appearance. Loss of the normal posterior pituitary T1 hyper-intensity matched a clinical persistence of diabetes insipidus, suggesting there is permanent damage to this structure by the initial disease process.  (+info)

Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. (68/11315)

The new immunosuppressive agent, SDZ-RAD, and its analog rapamycin were examined for intestinal absorption, metabolism, and bioavailability in Wistar rats. Intestinal first-pass metabolism studies from rat jejunum showed that at 0.5 mg of SDZ-RAD/kg rat, 50% of the parent compound was metabolized in the intestinal mucosa, and this decreased to around 30% when SDZ-RAD was increased to 5.0 mg/kg rat. Results for rapamycin at the low dose were similar to those for SDZ-RAD, but at the higher dose only 1 to 14% of the total rapamycin absorbed was metabolized by the intestine. After i.v. administration of 1 mg/kg SDZ-RAD or rapamycin, the area under the concentration curve (AUC) for rapamycin was twice that of SDZ-RAD, resulting in a systemic clearance of 6.2 ml/min and 3.0 ml/min for SDZ-RAD and rapamycin, respectively. However, the AUC for oral absorption was similar for the two compounds: 140 and 172 ng*h/ml for SDZ-RAD and rapamycin, respectively. Because blood clearance was faster for SDZ-RAD after i.v. administration, the absolute oral bioavailability for SDZ-RAD was 16% compared with 10% for rapamycin. Overall, the data suggest that intestinal first pass is a major site of metabolism for SDZ-RAD and rapamycin and that intestinal absorption of SDZ-RAD was much faster than that of rapamycin. This allowed it to counteract the combined actions of faster systemic clearance and increased intestinal metabolism, resulting in comparable absolute exposure when given orally. Also, the coadministration of cyclosporin A with SDZ-RAD was shown to dramatically increase blood AUCs for SDZ-RAD, probably through saturating intestinal metabolism mechanisms.  (+info)

Tumor-induced immunosuppression. (69/11315)

Three tumor systems, including a mastocytoma, plasmacytomas, and a leukemia-lymphoma were studied for their ability to modify humoral immunity to sheep erythrocytes both in vivo and in vitro. All tumors resulted in a depression of the hemolytic antibody plaque-forming cell response in susceptible mice. These studies indicated that the mechanism(s) of suppression, although not fully defined, were different for each model system investigated.  (+info)

Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T-cells and NF-kappaB transcriptional activation. (70/11315)

PG490 (triptolide) is a diterpene triepoxide with potent immunosuppressive and antiinflammatory properties. PG490 inhibits interleukin(IL)-2 expression by normal human peripheral blood lymphocytes stimulated with phorbol 12-myristate 13-acetate (PMA) and antibody to CD3 (IC50 of 10 ng/ml), and with PMA and ionomycin (Iono, IC50 of 40 ng/ml). In Jurkat T-cells, PG490 inhibits PMA/Iono-stimulated IL-2 transcription. PG490 inhibits the induction of DNA binding activity at the purine-box/antigen receptor response element (ARRE)/nuclear factor of activated T-cells (NF-AT) target sequence but not at the NF-kappaB site. PG490 can completely inhibit transcriptional activation at the purine-box/ARRE/NF-AT and NF-kappaB target DNA sequences triggered by all stimuli examined (PMA, PMA/Iono, tumor necrosis factor-alpha). PG490 also inhibits PMA-stimulated activation of a chimeric transcription factor in which the C-terminal TA1 transactivation domain of NF-kappaB p65 is fused to the DNA binding domain of GAL4. In 16HBE human bronchial epithelial cells, IL-8 expression is regulated predominantly by NF-kappaB, and PG490 but not cyclosporin A can completely inhibit expression of IL-8. The mechanism of PG490 inhibition of cytokine gene expression differs from cyclosporin A and involves nuclear inhibition of transcriptional activation of NF-kappaB and the purine-box regulator operating at the ARRE/NF-AT site at a step after specific DNA binding.  (+info)

Regulation of inflammatory responses by oncostatin M. (71/11315)

Oncostatin M (OM) is a pleiotropic cytokine produced late in the activation cycle of T cells and macrophages. In vitro it shares properties with related proteins of the IL-6 family of cytokines; however, its in vivo properties and physiological function are as yet ill defined. We show that administration of OM inhibited bacterial LPS-induced production of TNF-alpha and lethality in a dose-dependent manner. Consistent with these findings, OM potently suppressed inflammation and tissue destruction in murine models of rheumatoid arthritis and multiple sclerosis. T cell function and Ab production were not impaired by OM treatment. Taken together these data indicate the activities of this cytokine in vivo are antiinflammatory without concordant immunosuppression.  (+info)

Relationship between chimerism and tolerance in a kidney transplantation model. (72/11315)

The persistence of donor leukocytes in recipients of organ allografts has been associated with long-term graft acceptance. However, it remains unclear whether this peripheral donor cell microchimerism plays an active role in graft acceptance or is simply a consequence of the maintenance of sufficient immunosuppression to avoid rejection. A model of kidney transplantation between swine leukocyte Ag (SLA)-matched miniature swine, in which tolerance can be established with or without immunosuppressive treatment, has been used to study the correlation between donor leukocyte chimerism and kidney graft acceptance. SLA-identical kidney transplants were performed from animals positive for an allelic pig leukocyte Ag to animals negative for this marker. SLA-identical kidney transplant recipients given a 12-day course of cyclosporine (CyA) (n = 3) became tolerant, showing stable serum creatinine levels (1-2 mg/dl) after cessation of CyA treatment. Donor cell chimerism (0.2-0.7%) was present by FACS in all three animals with peak levels detected at 3 wk. Two control animals receiving SLA-identical kidney grafts without CyA also showed stable serum creatinine levels and became tolerant. However, in neither of these animals could donor leukocytes be detected in the peripheral blood beyond 1 wk following transplantation. In one additional control animal, ureteral obstruction occurred at day 10, and was associated with additional peripheral chimerism, presumably related to inflammation rather than to immune status. These results indicate that the persistence of donor cell chimerism is not a requirement for the maintenance of tolerance to organ allografts in this model.  (+info)