DNA vaccination favours memory rather than effector B cell responses. (57/5750)

Following priming and boosting of mice with a DNA vector pEE6DeltaS-hCGss expressing sequences encoding a transmembrane version of the beta-chain of human chorionic gonadotropin (hCGbeta), we failed to detect appreciable levels of specific antibody. However, subsequent challenge with hCG protein in Ribi adjuvant elicited a strong and rapid secondary immune response. This response was of comparable magnitude to that produced following priming, boosting and challenge with protein in adjuvant. Thus, DNA vaccination with this vector is as efficient in generating B cell memory as is conventional immunization, but the memory generation occurs in the absence of an overt effector response. Despite an overall similar level of specific antibody, the DNA-vaccinated mice produced hCG-specific antibodies biased towards IgG2a and IgG2b isotypes, whereas the protein-vaccinated mice produced higher levels of IgG1 antibodies. Both Th1 and Th2 cytokines (interferon-gamma (IFN-gamma) and IL-4) were lower in the spleens of the DNA-immunized animals compared with the protein-Ribi-immunized animals, possibly suggesting a different level of helper T cell response to the two different modes of immunization.  (+info)

In vivo proliferation of naive and memory influenza-specific CD8(+) T cells. (58/5750)

The virus-specific CD8(+) T cell response has been analyzed through the development, effector, and recovery phases of primary and secondary influenza pneumonia. Apparently, most, if not all, memory T cells expressing clonotypic receptors that bind a tetrameric complex of influenza nucleoprotein (NP)(366-374) peptide+H-2D(b) (NPP) are induced to divide during the course of this localized respiratory infection. The replicative phase of the recall response ends about the time that virus can no longer be recovered from the lung, whereas some primary CD8(+)NPP(+) T cells may proliferate for a few more days. The greatly expanded population of CD8(+)NPP(+) memory T cells in the lymphoid tissue of secondarily challenged mice declines progressively in mean prevalence over the ensuing 100 days, despite the fact that at least some of these lymphocytes continue to cycle. The recall of cell-mediated immunity thus is characterized by massive proliferation of the antigen-specific CD8(+) set, whereas the extent of lymphocyte turnover in the absence of cognate peptide is variable, at a low level, and can be influenced by intercurrent infection.  (+info)

Cutting edge: HIV-1 Tat protein differentially modulates the B cell response of naive, memory, and germinal center B cells. (59/5750)

Critical steps of B cell differentiation occur within lymphoid organs that are also major sites of HIV-1 replication. Because Tat can be released by infected cells, we investigated whether extracellular HIV-1 Tat modulates cell proliferation of B cells at critical stages of their differentiation. Here we show that extracellular Tat inhibited the proliferation of B cell receptor-triggered naive and memory B cells by >80% but had no effect on their CD40 mAb and IL-4-mediated proliferation. In striking contrast, Tat doubled the germinal center B cell proliferation induced by CD40 mAb and IL-4. These effects were dose dependent and required the addition of Tat at the initiation of the culture, suggesting that Tat acts on early stages of cell cycle progression. By its effects on B cell subsets, Tat might directly affect the normal B cell differentiation process in HIV-positive patients and favor the occurrence of AIDS-associated B cell lymphomas.  (+info)

On the lifespan of virgin T lymphocytes. (60/5750)

To study the lifespan of virgin T lymphocytes, we removed the thymus from adult female mice and then, at various times afterward, tested their ability to mount an immune response to a newly encountered Ag, the male Ag H-Y. We found that unprimed thymectomized mice were able to generate a primary response to H-Y for some time after thymectomy but lost this ability at approximately 6 mo. In contrast, mice that were primed to H-Y just after thymectomy continued to display immunological memory to H-Y for >1 year. These experiments show that primary immune responses disappear in the absence of a thymus.  (+info)

B cell responses to a peptide epitope. VIII. Immune complex-mediated regulation of memory B cell generation within germinal centers. (61/5750)

Using an in vivo reconstitution assay, we examine here the role of immune complexes in both formation of germinal centers (GC) and processes that occur subsequently within. The presence of Ag, as immune complexes, was found not to constitute a limiting requirement for the initiation of GC formation. No detrimental effect either on numbers or sizes of the resulting GC was observed when Ag-containing immune complexes were omitted during reconstitution. Thus, both recruitment and proliferation of Ag-activated B cells within GC appear not to be limited by Ag concentrations. In contrast, the presence of immune complexes was observed to be obligatory for the generation of Ag-specific memory B cells. This optimally required immune complexes to be constituted by IgG-class Abs with epitope specificities that were homologous to those of the GC B cells. The GC reaction was also found to be characterized by an enhancement of Ab specificity for the homologous epitope. Although some improvement in specificity was noted in recall responses from immune complex-deficient GC, the presence of appropriate immune complexes served to further optimize the outcome. Here again, isotype and epitope-specificity of the Ab constituent in immune complexes proved to be important.  (+info)

V(H) gene analysis of IgM-secreting myeloma indicates an origin from a memory cell undergoing isotype switch events. (62/5750)

IgM-secreting plasma cell tumors are rare variants of typical isotype-switched multiple myeloma with a similar disease outcome. To probe the origin and clonal history of these tumors, we have analyzed V(H) gene sequences in 6 cases. Potentially functional tumor-derived V(H) genes were all derived from V(H)3, with the V(3-7) gene segment being used by 4 of 6. All were somatically mutated, with a mean deviation from germline sequence of 5.2% (range, 3.1% to 7.1%). The distribution of replacement mutations was consistent with antigen selection in 4 of 6 cases, and no intraclonal heterogeneity was observed. Clonally related switched isotype transcripts were sought in 4 cases, and Cgamma transcripts with tumor-derived CDR3 sequence were identified in 2 of 4. These findings indicate that IgM-secreting myelomas are arrested at a postfollicular stage at which somatic mutation has been silenced. Isotype switch variants show the cell of origin to be at the IgM to IgG switch point. These features indicate that the final neoplastic event has occurred at a stage immediately before that of typical isotype-switched myeloma. One possibility is that IgM myeloma involves the previously identified precursor cell of typical myeloma.  (+info)

Memory/effector T cells in TCR transgenic mice develop via recognition of enteric antigens by a second, endogenous TCR. (63/5750)

The majority of clonotypic CD4(+) T cells in the intestinal lamina propria of DO11.10 TCR transgenic mice have an activated/memory phenotype and produce effector cytokines despite the absence of prior exposure to ovalbumin (OVA), the transgene-specific antigen. A small number of splenic T cells have a similar phenotype. Clonotypic T cells from Peyer's patch are intermediate in both phenotype and effector cytokine production. Flow cytometric analysis of cells isolated from thymectomized, OVA-naive DO11.10 mice treated with continuous administration of BrdU indicated that a significant fraction of clonotype-positive T cells in the lamina propria and Peyer's patch were in the cell cycle, with significantly fewer cycling cells in the spleen. Most of the cycling cells from each anatomic site expressed low levels of CD45RB. Effector cytokine expression was enriched in the CD45RB(low) populations. These memory/effector cell populations were eliminated in DO11.10/SCID and DO11.10/RAG-2(-/-) mice, suggesting that recognition of non-OVA antigens through a second, non-clonotypic TCR was driving differentiation of memory/effector cells in naive BALB/c DO11.10 mice. Clonotypic CD4(+) T cells isolated from DO11.10, but not from DO11.10/SCID or DO11.10/RAG-2(-/-) mice, were stimulated to enter the cell cycle by antigen-presenting cells pulsed with an intestinal bacterial antigen extract. These data provide direct evidence that enteric bacterial antigens can activate transgenic T cells through a second, non-clonotypic TCR, and support the notion that the development and turnover of memory/effector cells in vivo is driven by the intestinal flora.  (+info)

Peripheral human CD8(+)CD28(+)T lymphocytes give rise to CD28(-)progeny, but IL-4 prevents loss of CD28 expression. (64/5750)

At birth, virtually all peripheral CD8(+) T cells express the CD28 co-stimulatory molecule, but healthy human adults accumulate CD28(-)CD8(+) T cells that often express the CD57 marker. While these CD28(-) subpopulations are known to exert effector-type functions, the generation, maintenance and regulation of CD28(-) (CD57(+) or CD57(-)) subpopulations remain unresolved. Here, we compared the differentiation of CD8(+)CD28(bright)CD57(-) T cells purified from healthy adults or neonates and propagated in IL-2, alone or with IL-4. With IL-2 alone, CD8(+)CD28(bright)CD57(-) T cell cultures yielded a prevailing CD28(-) subpopulation. The few persisting CD28(dim) and the major CD28(-) cells were characterized by similar telomere shortening at the plateau phase of cell growth. Cultures from adults donors generated four final CD8(+) phenotypes: a major CD28(-)CD57(+), and three minor CD28(-)CD57(-), CD28(dim)CD57(-) and CD28(dim)CD57(dim). These four end-stage CD8(+) subpopulations displayed a fairly similar representation of TCR V(beta) genes. In cultures initiated with umbilical cord blood, virtually all the original CD8(+)CD28(bright) T cells lost expression of CD28, but none acquired CD57 with IL-2 alone. IL-4 impacted on the differentiation pathways of the CD8(+)CD28(bright)CD57(-) T cells: the addition of IL-4 led both the neonatal and the adult lymphocytes to keep their expression of CD28. Thus, CD8(+)CD28(bright)CD57(-) T cells can give rise to four end-stage subpopulations, the balance of which is controlled by both the cytokine environment, IL-4 in particular, and the proportions of naive and memory CD8(+)CD28(+) T cells.  (+info)