TCR engagement regulates differential responsiveness of human memory T cells to Fas (CD95)-mediated apoptosis. (17/5750)

In this work, we have tried to establish whether human memory T cells may be protected from Fas (CD95)-induced apoptosis when correctly activated by Ag, and not protected when nonspecifically or incorrectly activated. In particular, we wanted to investigate the molecular mechanisms that regulate the fate of memory T cells following an antigenic challenge. To address this issue, we chose an experimental system that closely mimics physiological T cell activation such as human T cell lines and clones specific for viral peptides or alloantigens. We demonstrate that memory T cells acquire an activation-induced cell death (AICD)-resistant phenotype when TCRs are properly engaged by specific Ag bound to MHC molecules. Ag concentration and costimulation are critical parameters in regulating the protective effect. The analysis of the mechanisms involved in the block of CD95 signal transduction pathways revealed that the crucial events are the inhibition of CD95-associated IL-1beta-converting enzyme (ICE)-like protease (FLICE) activation and poly(ADP)-ribose polymerase cleavage, and the mRNA expression of FLICE-like inhibitory protein. Furthermore, we have observed that TCR-mediated neosynthesis of FLICE-like inhibitory protein mRNA is suppressed either by protein tyrosine kinase inhibitors or cyclosporin A. In conclusion, the present analysis of the effects of TCR triggering on the regulation of AICD suggests that AICD could be inhibited in human memory T cells activated in vivo by a foreign Ag, but may become operative when the Ag has been cleared.  (+info)

Adjuvant-guided type-1 and type-2 immunity: infectious/noninfectious dichotomy defines the class of response. (18/5750)

Traditionally, protein Ags have been injected in CFA (oil with inactivated mycobacteria) to induce immunity and with IFA (oil alone) to induce tolerance. We report here that injection of hen eggwhite lysozyme, a prototypic Ag, in CFA-induced and IFA-induced pools of hen eggwhite lysozyme-specific memory T cells of comparable fine specificity, clonal size, and avidity spectrum, but with type-1 and type-2 cytokine signatures, respectively. This adjuvant-guided induction of virtually unipolar type-1 and type-2 immunity was observed with seven protein Ags and in a total of six mouse strains. Highly polarized type-1 and type-2 immunity are thus readily achievable through the choice of adjuvant, irrespective of the genetic bias of the host and of the nature of the protein Ag. This finding should have far-reaching implications for the development of vaccines against infectious and autoimmune diseases. Furthermore, our demonstration that Ag injected with IFA is as strongly immunogenic for T cells as it is with CFA shows that the presence of the mycobacteria determines not the priming of naive T cells through the second-signal link but the path of downstream differentiation toward CD4 memory cells that express either type-1 or type-2 cytokines.  (+info)

Reconciling repertoire shift with affinity maturation: the role of deleterious mutations. (19/5750)

The shift in Ab repertoire, from Abs dominating certain primary B cell responses to genetically unrelated Abs dominating subsequent "memory" responses, challenges the accepted paradigm of affinity maturation. We used mathematical modeling and computer simulations of the dynamics of B cell responses, hypermutation, selection, and memory cell formation to test hypotheses attempting to explain repertoire shift. We show that repertoire shift can be explained within the framework of the affinity maturation paradigm, only when we recognize the destructive nature of hypermutation: B cells with a high initial affinity for the Ag are less likely to improve through random mutations.  (+info)

Virus-induced CD8+ T cell clonal expansion is associated with telomerase up-regulation and telomere length preservation: a mechanism for rescue from replicative senescence. (20/5750)

In acute infectious mononucleosis (AIM), very large clones of Ag-specific CD8+ effector T cells are generated. Many clones persist as memory cells, although the clone size is greatly reduced. It would be expected that the large number of cell divisions occurring during clonal expansion would lead to shortening of telomeres, predisposing to replicative senescence. Instead, we show that clonally expanded CD8+ T cells in AIM have paradoxical preservation of telomere length in association with marked up-regulation of telomerase. We postulate that this allows a proportion of responding T cells to enter the memory pool with a preserved capacity to continue dividing so that long-term immunological memory can be maintained.  (+info)

Enhancement of the Listeria monocytogenes p60-specific CD4 and CD8 T cell memory by nonpathogenic Listeria innocua. (21/5750)

The contact of T cells to cross-reactive antigenic determinants expressed by nonpathogenic environmental micro-organisms may contribute to the induction or maintenance of T cell memory. This hypothesis was evaluated in the model of murine Listeria monocytogenes infection. The influence of nonpathogenic L. innocua on the L. monocytogenes p60-specific T cell response was analyzed. We show that some CD4 T cell clones raised against purified p60 from L. monocytogenes cross-react with p60 purified from L. innocua. The L. monocytogenes p60-specific CD4 T cell clone 1A recognized the corresponding L. innocua p60 peptide QAAKPAPAPSTN, which differs only in the first amino acid residue. In vitro experiments revealed that after L. monocytogenes infection of APCs, MHC class I-restricted presentation of p60 occurs, while MHC class II-restricted p60 presentation is inhibited. L. innocua-infected cells presented p60 more weakly but equally well in the context of both MHC class I and MHC class II. In contrast to these in vitro experiments the infection of mice with L. monocytogenes induced a strong p60-specific CD4 and CD8 T cell response, while L. innocua infection failed to induce p60-specific T cells. L. innocua booster infection, however, expanded p60-specific memory T cells induced by previous L. monocytogenes infection. In conclusion, these findings suggest that infection with a frequently occurring environmental bacterium such as L. innocua, which is nonpathogenic and not adapted to intracellular replication, can contribute to the maintenance of memory T cells specific for a related intracellular pathogen.  (+info)

T-cell activation, proliferation, and memory after cardiac transplantation in vivo. (22/5750)

OBJECTIVE: To study the response of alloantigen (H2Kb)-specific T cells to a H2b+ cardiac allograft in vivo. SUMMARY BACKGROUND DATA: The response of T cells to alloantigen has been well characterized in vitro but has proved more difficult to assess in vivo. The aim of these experiments was to develop a model of T-cell-mediated rejection where the response of T cells after transplantation of a cardiac allograft could be followed in vivo. METHODS: Purified CD8+ T cells from H2Kb-specific TCR transgenic mice (BM3; H2k) were adoptively transferred into thymectomized, T-cell-depleted CBA/Ca (H2k) mice. These mice were then transplanted with a H2Kb+ cardiac allograft. Using four-color flow cytometry, the proliferative response, modulation of activation markers, and potential cytokine production of the H2Kb-specific T cells was assessed after transplantation. RESULTS: Consistent rejection of H2Kb+ cardiac allografts required the transfer of at least 6 x 10(6) CD8+ H2Kb-specific T cells. Short-term analyses revealed that the transgenic-TCR+/ CD8+ T cells proliferated and became activated after transplantation of an H2Kb+ cardiac allograft. Fifty days after transplantation, the transgenic-TCR+/CD8+ T cells remained readily detectable, bore a predominantly memory phenotype (CD44hi), and rapidly produced interleukin 2 and interferon-gamma on in vitro restimulation. CONCLUSIONS: These data show that the activation of alloantigen-specific T cells can be followed in vivo in short-term and long-term experiments, thereby providing a unique opportunity to study the mechanisms by which T cells respond to allografts in vivo.  (+info)

A comparative study of the calcium system in memory T cells and naive T cells. (23/5750)

The comparative analysis of responses of memory and naive T lymphocytes to Ca2+-mobilizing agents, namely Con A, thimerosal, thapsigargin and ionomycin, was carried out. The effect of these agents on both types of T cells differed qualitatively and quantitatively. The lack of intracellular Ca2+ stores in memory T cells was shown. Ca2+-mobilizing agents did not induce influx of Ca2+ in memory T cells from outside and this was the reason for their stability to Ca2+ ionophores. It was also shown that memory T cells were resistant to the 'Ca2+ paradox'.  (+info)

IL-12 is dispensable for innate and adaptive immunity against low doses of Listeria monocytogenes. (24/5750)

We have studied IL-12p35-deficient (IL-12p35(-/-)) mice to evaluate the role of IL-12 in resistance against Listeria monocytogenes. In the absence of bioactive IL-12p75, mutant mice acquired higher bacterial organ burden than wild-type mice and died during the first week following infection with normally sublethal doses of Listeria. Moreover, blood IFN-gamma levels were strikingly reduced in mutant mice at day 2 post-infection. These results suggest that in IL-12p35-deficient mice impaired production of IFN-gamma which is crucial for activation of listericidal effector functions of macrophages leads to defective innate immunity against Listeria. In contrast to mice deficient for IFN-gamma or IFN-gamma receptor which are unable to resist very low infection doses of Listeria, IL-12p35(-/-) mice resisted up to 1000 c.f.u. and were able to eliminate Listeria. Spleen cells from mutant mice re-stimulated with heat-killed Listeria produced considerable amounts of IFN-gamma, suggesting that at low dose infection sufficient IFN-gamma is produced independently of IL-12. Subsequent challenge of these immunized mice with high doses of L. monocytogenes resulted in sterile elimination demonstrating efficient memory responses. These results demonstrate for the first time that at low doses of Listeria IL-12 is neither critical for innate immunity nor for the development of protective T cell-dependent acquired immunity.  (+info)