Developmental changes in mucosubstances revealed by immunostaining with antimucus monoclonal antibodies and lectin staining in the epithelium lining the segment from gizzard to duodenum of the chick embryo. (49/66693)

The mucosubstances in the epithelium lining the segment from gizzard to duodenum during development of the chick embryo was studied histochemically using monoclonal antibodies against gizzard mucus and lectins, with attention to the regional differentiation of the epithelium in this segment. The anterior limit of epithelial CdxA mRNA expression detected by in situ hybridisation, which served as the position of the gizzard-duodenal boundary, was clearly found from d 3. Granules positive for some antibodies or lectins were found in the region ranging from the posterior part of the gizzard to the duodenum at d 3, which was followed by an increase in the number of granules and a gradual enlargement of the granule-positive area to the anterior part of the gizzard over 4-6 d. From d 4, the epithelia of the gizzard body and of the pyloric or duodenal region came to be differently stained with some antibodies or lectins. From d 10, each region showed a specific pattern of staining. The epithelia of the gizzard body and pyloric region contained abundant mucus granules with a different staining pattern. In the duodenum the number of stained granules was low except in occasional goblet cells. Thus the epithelia of the gizzard body, pyloric region and duodenum may produce different mucosubstances and the regional differentiation in these epithelia may start at rather early stages soon after the formation of digestive tube.  (+info)

Possible role of serotonin in Merkel-like basal cells of the taste buds of the frog, Rana nigromaculata. (50/66693)

Merkel-like basal cells in the taste buds of the frog were examined by fluorescence histochemistry, immunohistochemistry and electron microscopy. There were about 16-20 basal cells arranged in a radial fashion at the base of each taste bud. These cells were strongly immunopositive for serotonin antiserum. They were characterised by the presence of numerous dense-cored granules in the cytoplasm ranging from 80 to 120 nm in diameter, and of microvilli protruding from the cell surface. For 4 mo after sensory denervation by cutting the gustatory nerves, all cell types of the taste bud were well preserved and maintained their fine structure. Even at 4 mo after denervation, the basal cells exhibited a strong immunoreaction with serotonin antiserum. To investigate the function of serotonin in the basal cells in taste bud function, serotonin deficiency was induced by administration of p-chlorophenylalanine (PCPA), an inhibitor of tryptophan hydroxylase, and of p-chloroamphetamine (PCA), a depletor of serotonin. After administration of these agents to normal and denervated frogs for 2 wk, a marked decrease, or complete absence, of immunoreactivity for serotonin was observed in the basal cells. Ultrastructurally, degenerative changes were observed in both types of frog; numerous lysosome-like myelin bodies were found in all cell types of the taste buds. The number of dense-cored granules in the basal cells also was greatly decreased by treatment with these drugs. Serotonin in Merkel-like basal cells appears to have a trophic role in maintenance of the morphological integrity of frog taste bud cells.  (+info)

Structural and functional abnormalities in the spleen of an mFtz-F1 gene-disrupted mouse. (51/66693)

The spleen has two main functions. The first is to provide a proper microenvironment to lymphoid and myeloid cells, whereas the second involves clearance of abnormal erythrocytes. Ad4BP/SF-1, a product of the mammalian FTZ-F1 gene (mFTZ-F1), was originally identified as a steroidogenic, tissue-specific transcription factor. Immunohistochemical examination of the mammalian spleens confirmed the expression of Ad4BP/SF-1 in endothelial cells of the splenic venous sinuses and pulp vein. In mFtz-F1 gene-disrupted (KO) mice, several structural abnormalities were detected in the spleen, including underdevelopment and nonuniform distribution of erythrocytes. Examination of the spleen of KO fetuses showed failure of development of certain tubular structures during embryogenesis. These structures are normally assembled by Ad4BP/SF-1 immunoreactive cells, and most likely form the vascular system during later stages of development. Other structural abnormalities in the spleen of the KO mice included defects in the tissue distribution of type-IV collagen, laminin, c-kit, and vimentin. These morphologic defects in the vascular system were associated with a decrease in the proportion of hematopoietic cells, although differentiation of these cells was not affected significantly. A high number of abnormal red blood cells containing Howell-Jolly bodies were noted in the KO mice, indicating impaired clearance by the splenic vascular system. We also detected the presence of an mRNA-encoding cholesterol side-chain cleavage P450 in the spleen, resembling the findings in steroidogenic tissues such as the gonads and adrenal cortex. The mRNA transcript was not involved in splenic structural defects as it was detected in the spleens of both normal and KO mice, indicating that the regulatory mechanism of the P450 gene in the spleen is different from that in steroidogenic tissues. Our results indicate that a lack of the mFtz-F1 gene in mice is associated with structural and functional abnormalities of the splenic vascular system.  (+info)

Labeling of the internal pool of GP IIb-IIIa in platelets by c7E3 Fab fragments (abciximab): flow and endocytic mechanisms contribute to the transport. (52/66693)

Abciximab is a new antiplatelet therapeutic in ischemic cardiovascular disease. The drug, chimeric Fab fragments of a murine monoclonal antibody (MoAb) (c7E3), blocks GP IIb-IIIa function. However, its capacity to reach all receptor pools in platelets is unknown. Electron microscopy and immunogold labeling were used to localize abciximab in platelets of patients receiving the drug for up to 24 hours. Studies on frozen-thin sections showed that c7E3 Fab, in addition to the surface pool, also labeled the surface-connected canalicular system (SCCS) and alpha-granules. Analysis of gold particle distribution showed that intraplatelet labeling was not accumulative and in equilibrium with the surface pool. After short-term incubations of platelets with c7E3 Fab in vitro, gold particles were often seen in lines within thin elements of the SCCS, some of which appeared in contact with alpha-granules. Little labeling was associated with Glanzmann's thrombasthenia platelets, confirming that the channels contained bound and not free c7E3 Fab. Endocytosis of abciximab in clathrin-containing vesicles was visualized by double staining and constitutes an alternative mechanism of transport. The remaining free pool of GP IIb-IIIa was evaluated with the MoAb AP-2; flow cytometry showed it to be about 9% on the surface of nonstimulated platelets but 33% on thrombin-activated platelets. The ability of drugs to block all pools of GP IIb-IIIa and then to be associated with secretion-dependent residual aggregation must be considered when evaluating their efficiency in a clinical context.  (+info)

Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons. (53/66693)

The characterization of the Caenorhabditis elegans unc-47 gene recently allowed the identification of a mammalian (gamma)-amino butyric acid (GABA) transporter, presumed to be located in the synaptic vesicle membrane. In situ hybridization data in rat brain suggested that it might also take up glycine and thus represent a general Vesicular Inhibitory Amino Acid Transporter (VIAAT). In the present study, we have investigated the localization of VIAAT in neurons by using a polyclonal antibody raised against the hydrophilic N-terminal domain of the protein. Light microscopy and immunocytochemistry in primary cultures or tissue sections of the rat spinal cord revealed that VIAAT was localized in a subset (63-65%) of synaptophysin-immunoreactive terminal boutons; among the VIAAT-positive terminals around motoneuronal somata, 32.9% of them were also immunoreactive for GAD65, a marker of GABAergic presynaptic endings. Labelling was also found apposed to clusters positive for the glycine receptor or for its associated protein gephyrin. At the ultrastructural level, VIAAT immunoreactivity was restricted to presynaptic boutons exhibiting classical inhibitory features and, within the boutons, concentrated over synaptic vesicle clusters. Pre-embedding detection of VIAAT followed by post-embedding detection of GABA or glycine on serial sections of the spinal cord or cerebellar cortex indicated that VIAAT was present in glycine-, GABA- or GABA- and glycine-containing boutons. Taken together, these data further support the view of a common vesicular transporter for these two inhibitory transmitters, which would be responsible for their costorage in the same synaptic vesicle and subsequent corelease at mixed GABA-and-glycine synapses.  (+info)

Actions of a pair of identified cerebral-buccal interneurons (CBI-8/9) in Aplysia that contain the peptide myomodulin. (54/66693)

A combination of biocytin back-fills of the cerebral-buccal connectives and immunocytochemistry of the cerebral ganglion demonstrated that of the 13 bilateral pairs of cerebral-buccal interneurons in the cerebral ganglion, a subpopulation of 3 are immunopositive for the peptide myomodulin. The present paper describes the properties of two of these cells, which we have termed CBI-8 and CBI-9. CBI-8 and CBI-9 were found to be dye coupled and electrically coupled. The cells have virtually identical properties, and consequently we consider them to be "twin" pairs and refer to them as CBI-8/9. CBI-8/9 were identified by electrophysiological criteria and then labeled with dye. Labeled cells were found to be immunopositive for myomodulin, and, using high pressure liquid chromatography, the cells were shown to contain authentic myomodulin. CBI-8/9 were found to receive synaptic input after mechanical stimulation of the tentacles. They also received excitatory input from C-PR, a neuron involved in neck lengthening, and received a slow inhibitory input from CC5, a cell involved in neck shortening, suggesting that CBI-8/9 may be active during forward movements of the head or buccal mass. Firing of CBI-8 or CBI-9 resulted in the activation of a relatively small number of buccal neurons as evidenced by extracellular recordings from buccal nerves. Firing also produced local movements of the buccal mass, in particular a strong contraction of the I7 muscle, which mediates radula opening. CBI-8/9 were found to produce a slow depolarization and rhythmic activity of B48, the motor neuron for the I7 muscle. The data provide continuing evidence that the small population of cerebral buccal interneurons is composed of neurons that are highly diverse in their functional roles. CBI-8/9 may function as a type of premotor neuron, or perhaps as a peptidergic modulatory neuron, the functions of which are dependent on the coactivity of other neurons.  (+info)

Central pattern generator for escape swimming in the notaspid sea slug Pleurobranchaea californica. (55/66693)

Escape swimming in the notaspid opisthobranch Pleurobranchaea is an episode of alternating dorsal and ventral body flexions that overrides all other behaviors. We have explored the structure of the central pattern generator (CPG) in the cerebropleural ganglion as part of a study of neural network interactions underlying decision making in normal behavior. The CPG comprises at least eight bilaterally paired interneurons, each of which contributes and is phase-locked to the swim rhythm. Dorsal flexion is mediated by hemiganglion ensembles of four serotonin-immunoreactive neurons, the As1, As2, As3, and As4, and an electrically coupled pair, the A1 and A10 cells. When stimulated, A10 commands fictive swimming in the isolated CNS and actual swimming behavior in whole animals. As1-4 provide prolonged, neuromodulatory excitation enhancing dorsal flexion bursts and swim cycle number. Ventral flexion is mediated by the A3 cell and a ventral swim interneuron, IVS, the soma of which is yet unlocated. Initiation of a swim episode begins with persistent firing in A10, followed by recruitment of As1-4 and A1 into dorsal flexion. Recurrent excitation within the As1-4 ensemble and with A1/A10 may reinforce coactivity. Synchrony among swim interneuron partners and bilateral coordination is promoted by electrical coupling among the A1/A10 and As4 pairs, and among unilateral As2-4, and reciprocal chemical excitation between contralateral As1-4 groups. The switch from dorsal to ventral flexion coincides with delayed recruitment of A3, which is coupled electrically to A1, and with recurrent inhibition from A3/IVS to A1/A10. The alternating phase relation may be reinforced by reciprocal inhibition between As1-4 and IVS. Pleurobranchaea's swim resembles that of the nudibranch Tritonia; we find that the CPGs are similar in many details, suggesting that the behavior and network are primitive characters derived from a common pleurobranchid ancestor.  (+info)

Adrenomedullin is upregulated in the heart and aorta during the early and late stages of sepsis. (56/66693)

Although circulating levels of adrenomedullin (ADM), a newly reported vasodilatory peptide with 52 amino acid residues in the human and 50 amino acid residues in the rat, are elevated during the early and late stages of sepsis, ADM levels in cardiovascular tissues and its precise localization remain to be determined. To study this, rats were subjected to sepsis by cecal ligation and puncture (CLP), followed by administration of 3 ml/100 g b.wt. normal saline to these and sham-operated animals. The heart and thoracic aorta were harvested at 5 h (i.e. the early stage of sepsis) and 20 h (late sepsis) after CLP. Tissue levels of ADM were determined by radioimmunoassay. The localization of ADM in the left ventricle and thoracic aorta was examined by using immunohistochemistry and electron microscopy techniques. The results indicated that ADM levels in the heart and thoracic aorta increased significantly at 5 h after CLP and remained elevated at 20 h after the onset of sepsis. Immunohistochemistry findings showed that ADM immunoreaction products were localized in the cytoplasm of the cardiac myocytes and aortic endothelial cells. Using electron microscopy, ADM immunoreaction products were found in the cytoplasmic matrixes. The immunostainings were also associated with the outer membranes of mitochondria and vesicles of the myocytes as well as vascular endothelial cells. It appears that the cardiovascular tissues, among other organ systems, contribute to the increased levels of plasma ADM under those conditions. Since ADM is localized in different cell populations in the heart and the large blood vessel (i.e. myocytes versus vascular endothelial cells), this peptide may play a differential role in regulating cardiac and vascular functions during sepsis as an autocrine and/or paracrine mediator.  (+info)