The degrees of plasma cell clonality and marrow infiltration adversely influence the prognosis of AL amyloidosis patients. (9/1652)

BACKGROUND AND OBJECTIVE: Primary amyloidosis is a lethal form of plasma cell (PC) dyscrasia characterized by deposits of monoclonal immunoglobulin light chains that cause organ dysfunction. In contrast to multiple myeloma, the amyloid clone is typically indolent and of small size, and marrow PC clonality is not always apparent. This is generally investigated by analyzing the light chain isotype ratio in bone marrow PC. We investigated whether the degree of PC infiltration (PC%) and clonality (PC isotype ratio) affected survival in 56 consecutive patients with primary amyloidosis. DESIGN AND METHODS: PC% was determined by morphologic examination. Immunofluorescence microscopy was used to determine the PC light chain isotype ratio. Statistical analysis was carried out using Cox regression models. RESULTS: The degrees of PC clonality and infiltration were inversely correlated with survival (PC isotype ratio, p = 0.001; PC%, p = 0.008). The two variables were weakly correlated (p = 0.02; r = 0.3). Bone marrow PC isotype ratio demonstrated a powerful independent prognostic value at multivariate analysis when analyzed together with congestive heart failure (the major known negative prognostic factor) and PC%. k/l ratio cut-off values of 0.2 (l patients, p = 0.022) and 16 (k patients, p = 0.03) discriminated two groups with a similar number of patients and significantly different survivals. INTERPRETATION AND CONCLUSIONS: PC clonality and marrow infiltration are important parameters that influence prognosis, presumably because they reflect the amount of pathogenic light chain synthesis.  (+info)

Molecular analysis of single B cells from T-cell-rich B-cell lymphoma shows the derivation of the tumor cells from mutating germinal center B cells and exemplifies means by which immunoglobulin genes are modified in germinal center B cells. (10/1652)

T-cell-rich B-cell lymphoma (TCRBCL) belongs to the group of diffuse large cell lymphomas (DLL). It is characterized by a small number of tumor B cells among a major population of nonmalignant polyclonal T cells. To identify the developmental stage of the tumor progenitor cells, we micromanipulated the putative neoplastic large CD20(+) cells from TCRBCLs and amplified and sequenced immunoglobulin (Ig) V gene rearrangements from individual cells. In six cases, clonal Ig heavy, as well as light chain, gene rearrangements were amplified from the isolated B cells. All six cases harbored somatically mutated V gene rearrangements with an average mutation frequency of 15.5% for heavy (VH) and 5.9% for light (VL) chains and intraclonal diversity based on somatic mutation. These findings identify germinal center (GC) B cells as the precursors of the transformed B cells in TCRBCL. The study also exemplifies various means how Ig gene rearrangements can be modified by GC B cells or their malignant counterparts in TCRBCL: In one case, the tumor precursor may have switched from kappa to lambda light chain expression after acquiring a crippling mutation within the initially functional kappa light chain gene. In another case, the tumor cells harbor two in-frame VH gene rearrangements, one of which was rendered nonfunctional by somatic mutation. Either the tumor cell precursor entered the GC with two potentially functional in-frame rearrangements or the second VHDHJH rearrangement occurred in the GC after the initial in-frame rearrangement was inactivated by somatic mutation. Finally, in each of the six cases, at least one cell contained two (or more) copies of a clonal Ig gene rearrangement with sequence variations between these copies. The presence of sequence variants for V region genes within single B cells has so far not been observed in any other normal or transformed B lymphocyte. Fluorescence in situ hybridization (FISH) points to a generalized polyploidy of the tumor cells.  (+info)

DNA binding by the VH domain of anti-Z-DNA antibody and its modulation by association of the VL domain. (11/1652)

mAb Z22 is a highly selective IgG anti-Z-DNA Ab from an immunized C57BL/6 mouse. Previous studies showed that heavy chain CDR3 amino acids are critical for Z-DNA binding by the single chain variable fragment (scFv) comprising both V region heavy chain (VH) and V region light chain (VL) of mAb Z22 and that the VH domain alone binds Z-DNA with an affinity similar to that of whole variable fragment (Fv). To determine whether Z-DNA binding by VH alone and by Fv involves identical complementarity determining region residues, we tested effects of single or multiple amino acid substitutions in recombinant VH, scFv, and associated VH-VL heterodimers. Each recombinant product was a fusion protein with a B domain of Staphylococcal protein A (SPA). Z22VH-SPA alone was not highly selective; it bound strongly to other polynucleotides, particularly polypyrimidines, and ssDNA as well as to Z-DNA. In contrast, scFv-SPA or associated VH-VL dimers bound only to Z-DNA. VL-SPA domains bound weakly to Z-DNA; SPA alone did not bind. Introduction of multiple substitutions revealed that the third complementarity determining region of the heavy chain (CDR3H) was critical for both VH and scFv binding to Z-DNA. However, single substitutions that eliminated or markedly reduced Z-DNA binding by scFv instead caused a modest increase or no reduction in binding by VH alone. Association of VH-SPA with Z22VL-SPA restored both the effects of single substitutions and Z-DNA selectivity seen with Fv and intact Ab. Polypyrimidine and ssDNA binding by the isolated VH domain of immunization-induced anti-Z-DNA Ab resembles the activity of natural autoantibodies and suggests that VH-dependent binding to a ligand mimicked by polypyrimidines may play a role in B cell selection before immunization with Z-DNA.  (+info)

Molecular modeling and preclinical evaluation of the humanized NR-LU-13 antibody. (12/1652)

A mouse-human chimeric monoclonal antibody (chNR-LU-13), specific for the EGP40 pancarcinoma antigen, was humanized through three-dimensional molecular modeling. Humanization of the chNR-LU-13 antibody is expected to enhance its use for patients undergoing immunotherapy. On the basis of the observed amino acid sequence identity, chNR-LU-13 complementary determining regions (CDRs) of the V(L) and V(H) regions were grafted onto the human anti-DNA-associated idiotype immunoglobulin clone, R3.5H5G'CL. Ten amino acids residues within the humanized framework were back-mutated to their corresponding chNR-LU-13 sequence, because they were predicted to disrupt the canonical classification of the CDRs or were within 5 A of a CDR. Synthesis of the V(L) and V(H) regions was accomplished by recursive PCR, and the dual-chain expression vector p451.C4 was positioned under control of the CMV(P+E). We observed by competitive ELISA that the recombinant humanized NR-LU-13 (huNR-LU-13) IgG1 antibody exhibited an indistinguishable immunoreactivity profile when compared with the murine monoclonal antibody (muNR-LU-10). The huNR-LU-13 antibody was effective in mediating both antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity when assayed against either the breast carcinoma cell line, MCF-7, or the colon adenocarcinoma cell line, SW1222. Biodistribution studies using i.v. coinjected 131I-muNR-LU-10 and 125I-huNR-LU-13 confirmed that the huNR-LU-13 specifically targets to the tumor in athymic BALB/c mice bearing the SW1222 human tumor xenograft. Humanization of the chNR-LU-13 antibody is expected to eliminate an undesired human antimouse antibody response, allowing for repeated i.v. administration into humans.  (+info)

Partial block in B lymphocyte development at the transition into the pre-B cell receptor stage in Vpre-B1-deficient mice. (13/1652)

The surrogate light chain (SL) is composed of two polypeptides, Vpre-B and lambda5. In large pre-BII cells the SL chain associates with Ig mu heavy chain (muH) to form the pre-B cell receptor (pre-BCR). In mice there are two Vpre-B genes which are 98% identical within the coding regions. The two genes are co-expressed at the RNA level and encode functional proteins that can assemble with lambda5. However, it is not known whether both gene products serve the same function in vivo. Here we have established mice that lack the Vpre-B1 gene (VpreB1(-/-)), but still express the Vpre-B2 gene, both as RNA and protein. In Vpre-B1(-/-) mice, the bone marrow cellularity and the percentage of B220+ cells is normal. However, among the B220+ cells, the percentage of pre-BI cells is increased, and the percentage of pre-BII and immature B cells is slightly decreased, suggesting that the lack of Vpre-B1 causes a partial block at the transition from pre-BI to pre-BII cells, i.e. into the pre-BCR stage. The number of cells that produce a functional pre-BCR is thus lower, but the cells that reach this stage are normal as they can be expanded by proliferation and then differentiate into more mature cells. The spleens of Vpre-B1 homozygous mutant mice show normal numbers of B and T lymphocytes. Moreover, the Ig loci are allelicly excluded and the homozygous mutant mice respond with normal levels of antigen-specific antibodies to T-dependent antigens. These results demonstrate that VpreB2 alone is capable of supporting B lymphocyte development in the bone marrow and can give rise to immuno-competent cells in the periphery.  (+info)

Elderly immune response to a TI-2 antigen: heavy and light chain use and bactericidal activity to Neisseria meningitidis serogroup C polysaccharide. (14/1652)

Previous studies of the elderly immune response to TI-2 antigens failed to correlate specific antibody levels with function and to compare responses with those of young adults. Neisseria meningitidis serogroup C capsular polysaccharide (MCPS) was used as a model TI-2 antigen. Anti-MCPS antibody levels were determined in elderly individuals and correlated with bactericidal activity. The anti-MCPS response in most persons was characterized by predominant IgG usage, with IgG2>IgG1. No light chain or IgA subclass predominated, but some responses showed a particular chain type. Bactericidal activity correlated best with IgG2 levels. Elderly subjects had lower anti-MCPS responses than the young adults did in all chain-specific anti-MCPS levels, and levels declined more rapidly. Bactericidal activity following immunization was significantly lower in the elderly persons. These results suggest the anti-MCPS antibody repertoire in the elderly is likely maintained, and the lower level of function is related to the lower antibody levels.  (+info)

On a regulatory gene controlling the expression of the murine lambda1 light chain. (15/1652)

We describe here two alleles, an allele of the lambda1 locus present in the SJL strain (rlambda1lo) and an allele of the lambda1 locus present in the BALB/c strain (rlambda1 +), of a regulatory gene locus which specifically influences the expression of the mouse lambda1 light chain structural gene. The rlambda1 regulatory gene is not linked to either the major histocompatibility complex or to the heavy-chain allogroup but appears to be linked to the lambda1 structural gene locus. In the homozygous state, the present of the rlambda1lo allele results in a 50-fold reduction in the number of lambda1 antigen-sensitive, bone-marrow derived lymphocytes (ASCs) compared to the presence of the rlambda1 + allele. However, those few lambda1ASCs present in rlambda1lo homozygotes can be induced normally to produce lambda1 light chains indistinguishable from those found in rlambda1 + homozygotes. The reduction in lambda1ASC's due to the rlambda1lo allele results both in a reduction in the amount of lambda1 Ig in the serum and also in a large variation in the magnitude of the lambda1 antibody response to alpha(1,3) dextran by individual animals. This variation permits the estimate that, on the average, 50 B cells of anti-alpha(1,3) specificity must be present per animal to permit a measurable response. Surprisingly, the expression of a gene locus regulating lambda1 light chain expression (rlambda1 locus) shows a clear gene dosage effect with rlambda1lo/rlambda1 + heterozygotes having 1/2 the number of lambda1ASCs and 1/2 the amount of serum lambda1 Ig as rlambda1 +/rlambda1 + homozygotes. This fact permits an analysis of the relationship between germ-line v-genes and their individual expression in serum Ig. The rlambda1 locus controls specifically a DNA-level event which occurs in stem cells as they become committed to lambda1 light chain expression. We postulate that the rlambda1 locus represents one of the DNA level recognition sites involved in the translocation event which places the vlambda1 and clambda1 structural genes in a transcriptional unit.  (+info)

Pre-B and B cells in rabbits. Ontogeny and allelic exclusion of kappa light chain genes. (16/1652)

Pre-B cells in developing rabbits were identified by immunofluorescence as cells containing small amounts of cytoplasmic IgM (cIgM) but lacking surface immunoglobulin (sIg). During ontogeny the first pre-B cells appeared in fetal liver at 23 days gestation, 2 days before the appearance of sIgM+ B lymphocytes. Pre-B cells were relatively frequent in fetal and adult bone marrow, but were not found in other tissues except rarely in fetal spleen. Allelic exclusion is apparently established at this early stage of development, because individual pre-B cells and B lymphocytes from heterozygous rabbits expressed only one of the alternative alleles in amounts sufficient for detection. Development of isotype diversity among rabbit B lymphocytes followed the general pattern seen in mouse and man. sIgM+ cells were detected before birth. Expression of sIgG was detected in neonatal rabbits on cells which were also sIgM+ but in older animals most sIgG+ cells lacked sIgM. Cells bearing sIgA were not found until 5-6 days of age, and had no other isotype on their surface.  (+info)