Interaction of HLA and age on levels of antibody to Plasmodium falciparum rhoptry-associated proteins 1 and 2. (73/2857)

The Plasmodium falciparum rhoptry-associated proteins 1 and 2 (RAP1 and RAP2) are candidate antigens for a subunit malaria vaccine. The design of the study, which looks at the acquisition of immunity to malaria from childhood to old age, has allowed us to document the interaction of HLA and age on levels of antibody to specific malarial antigens. Antibodies reach maximum levels to RAP1 after the age of 15 but to RAP2 only after the age of 30. The effect of HLA-DRB1 and -DQB1 and age on levels of antibody to rRAP1 and rRAP2 was analyzed with a multiple regression model in which all HLA alleles and age were independent variables. DQB1*0301 and -*03032 showed an age-dependent association with levels of antibody to rRAP1, being significant in children 5 to 15 years (P < 0.001) but not in individuals over 15 years of age. DRB1*03011 showed an age-dependent association with antibody levels to rRAP2; however, this association was in adults over the age of 30 years (P < 0.01) but not in individuals under the age of 30 years. No associations were detected between DRB1 alleles and RAP1 antibody levels or between DQB1 alleles and RAP2 antibody levels. Thus, not only the HLA allele but also the age at which an interaction is manifested varies for different malarial antigens. The interaction may influence either the rate of acquisition of antibody or the final level of antibody acquired by adults.  (+info)

Comparative genomics of the eukaryotes. (74/2857)

A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.  (+info)

Immunologic effects of yogurt. (75/2857)

Many investigators have studied the therapeutic and preventive effects of yogurt and lactic acid bacteria, which are commonly used in yogurt production, on diseases such as cancer, infection, gastrointestinal disorders, and asthma. Because the immune system is an important contributor to all of these diseases, an immunostimulatory effect of yogurt has been proposed and investigated by using mainly animal models and, occasionally, human subjects. Although the results of these studies, in general, support the notion that yogurt has immunostimulatory effects, problems with study design, lack of appropriate controls, inappropriate route of administration, sole use of in vitro indicators of the immune response, and short duration of most of the studies limit the interpretation of the results and the conclusions drawn from them. Nevertheless, these studies in toto provide a strong rationale for the hypothesis that increased yogurt consumption, particularly in immunocompromised populations such as the elderly, may enhance the immune response, which would in turn increase resistance to immune-related diseases. This hypothesis, however, needs to be substantiated by well-designed randomized, double-blind, placebo-controlled human studies of an adequate duration in which several in vivo and in vitro indexes of peripheral and gut-associated immune response are tested.  (+info)

Effects of cigarette smoke on immune response: chronic exposure to cigarette smoke impairs antigen-mediated signaling in T cells and depletes IP3-sensitive Ca(2+) stores. (76/2857)

Chronic exposure of mice and rats to cigarette smoke affects T-cell responsiveness that may account for the decreased T-cell proliferative and T-dependent antibody responses in humans and animals exposed to cigarette smoke. However, the mechanism by which cigarette smoke affects the T cell function is not clearly understood. Our laboratory has shown that chronic exposure of rats to nicotine inhibits the antibody-forming cell response, impairs the antigen-mediated signaling in T cells, and induces T cell anergy. To determine the mechanism of cigarette smoke-induced immunosuppression and to compare it with chronic nicotine exposure, rats were exposed to diluted, mainstream cigarette smoke for up to 30 months or to nicotine (1 mg/kg b.wt./24 h) via miniosmotic pumps for 4 weeks, and evaluated for immunological function in vivo and in vitro. This article presents evidence suggesting that T cells from long-term cigarette smoke-exposed rats exhibit decreased antigen-mediated proliferation and constitutive activation of protein tyrosine kinase and phospholipase C-gamma1 activities. Moreover, spleen cells from smoke-exposed and nicotine-treated animals have depleted inositol-1, 4,5-trisphosphate-sensitive Ca(2+) stores and a decreased ability to raise intracellular Ca(2+) levels in response to T cell antigen receptor ligation. These results suggest that chronic smoking causes T cell anergy by impairing the antigen receptor-mediated signal transduction pathways and depleting the inositol-1,4, 5-trisphosphate-sensitive Ca(2+) stores. Moreover, nicotine may account for or contribute to the immunosuppressive properties of cigarette smoke.  (+info)

Immunoprotective activities of multiple chaperone proteins isolated from murine B-cell leukemia/lymphoma. (77/2857)

Although the use of tumor-derived heat shock/chaperone proteins (HSPs) as anticancer vaccines is gaining wider study and acceptance, there have thus far been no reports concerning chaperone antitumor activities against disseminated hematological malignancies. We have devised an efficient and effective method for purification of the chaperone proteins grp94/gp96, HSP90, HSP70, and calreticulin from harvested A20 murine leukemia/lymphoma tumor material. We have demonstrated that these purified proteins, when used as vaccines, can induce potent and specific immunity against a lethal tumor challenge. Individual chaperone proteins were differentially effective in their abilities to provide immune protection. The increase in survival generated by the most effective chaperone vaccine, HSP70, resulted from at least a 2-log reduction in tumor burden. Syngeneic granulocyte macrophage colony-stimulating factor producing fibroblasts were injected at the site of vaccination in an attempt to augment the immune response. Surprisingly, localized granulocyte macrophage colony-stimulating factor production inhibited the protective effects of chaperone vaccination. These studies provide evidence that chaperone proteins can be isolated from B-cell tumors and used effectively to immunize against disseminated lymphoid malignancies.  (+info)

Apoptosis and predisposition to oral cancer. (78/2857)

The term apoptosis, also known as programmed cell death (PCD), was coined by developmental biologists a number of years ago to describe a form of cell death characterized by several unique morphological and biochemical features. Genetic studies of the round worm Caeneorhabditis elegans, a simple multicellular organism, first revealed apoptosis to be an integral part of the developmental program. Subsequently, the importance of apoptosis in higher organisms was demonstrated in several eukaryotic systems. [n mammals, apoptosis is widespread during embryogenesis and in adult tissues. It is required for normal tissue homeostasis and for clonal selection in the immune system. In both developing and adult organisms, apoptosis plays a central role in reinforcing appropriate cellular patterns and in regulating cell number by eliminating cells that are harmful or no longer needed. It is becoming increasingly clear that disruption in the apoptosis pathway can contribute to the development of a number of developmental, inflammatory, degenerative, and neoplastic diseases. The effector arm of the apoptotic program includes members of the Bcl-2 gene family that function as either death agonists or death antagonists. These proteins participate in an elaborate genetically controlled biochemical pathway that functions to maintain tissue and organ homeostasis and serve as a critical defense mechanism to guard against malignant transformation. Cancer is the result of a series of genetic lesions that include activation of oncogenes and inactivation or loss of tumor suppressor genes. Several groups of investigators have observed that deregulated expression of oncogenes can subvert apoptotic pathways, resulting in prolonged cell survival. In pathological settings such as cancer, members of the Bcl-2 gene family are able to synergize with oncogenes and tumor suppressor genes to transform cells. In this review, we describe the process of apoptosis in mammalian cells and define the role and biochemical pathways through which the Bcl-2 gene family induce and/or protect cells from apoptosis. Last, we will discuss the evidence which suggests that alterations in this pathway may play a central role in tumorigenesis by allowing genetically damaged cells normally destined for elimination to persist, predisposing them to additional mutations and driving them to malignancy.  (+info)

Dendritic cells: immunological sentinels with a central role in health and disease. (79/2857)

Immunological effector cells must be sensitive to the antigens or environmental signals that indicate that a pathogen is present. To this end, a group of cells known as the professional antigen-presenting cells have the ability to educate T, B and NK cells as to the fingerprints of specific infections. The most adept of these cells are a closely related family termed dendritic cells (DC). A subset of these act as peripheral sentinels, specializing in the uptake, processing and presentation of antigenic material combined with an ability to detect a wide variety of 'danger' signals. These 'danger' or activation signals induce profound changes in dendritic cell physiology, facilitating the efficient stimulation of both adaptive and innate immunity. In the present review, a number of recent advances in the understanding of DC biology are discussed. These advances offer insights into the pathogenesis of a wide variety of diseases and point towards future strategies for immunotherapy.  (+info)

The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. (80/2857)

The recruitment of neutrophil granulocytes to sites of tissue injury is one of the earliest events during host defense. Several chemotactic cytokines belonging to the CXC subfamily of chemokines are thought to be implicated in this kind of response. Especially those CXC chemokines that are stored in blood platelets and become immediately released upon activation are likely to dominate neutrophil-dependent host defense at the onset of inflammation. The major platelet-derived CXC chemokines are the beta-thromboglobulins and platelet factor 4 (PF-4), which are both released into the blood at micromolar concentrations. The availability as well as the functional activity of these mediators appear to be subject to tight control by diverse regulatory mechanisms. These include proteolytic processing of chemokine precursors, oligomer formation, and the differential usage of neutrophil-expressed receptors. Herein we review our work on early neutrophil regulation by PF-4, the beta-thromboglobulin neutrophil-activating peptide 2 (NAP-2) and its major precursor connective tissue-activating peptide III (CTAP-III). We moreover propose a model to assess the contribution by either of these chemokines to coordinated recruitment and activation of neutrophils in response to acute tissue injury.  (+info)