Better red than dead: carotenoid-based mouth coloration reveals infection in barn swallow nestlings. (65/2857)

Nestling birds solicit food from their parents by displaying their open brightly coloured gapes. Carotenoids affect gape colour, but also play a central role in immunostimulation. Therefore, we hypothesize that, by differentially allocating resources to nestlings with more brightly coloured gapes, parents favour healthy offspring which are able to allocate carotenoids to gape coloration without compromising their immune defence. We demonstrated that, in the barn swallow Hirundo rustica, (i) parents differentially allocate food to nestlings with an experimentally brighter red gape, (ii) nestlings challenged with a novel antigen (sheep red blood cells, SRBCs) have less bright gape colour than their control siblings, (iii) nestlings challenged with SRBCs but also provided with the principal circulating carotenoid (lutein) have more brightly coloured red gapes than their challenged but unsupplemented siblings and (iv) the gape colour of nestlings challenged with SRBCs and provisioned with lutein exceeds that of siblings that were unchallenged. This suggests that parents may favour nestlings with superior health by preferentially feeding offspring with the brightest gapes.  (+info)

Regulated gene expression systems. (66/2857)

Most gene therapy research to date has focused on solving the delivery problem--getting genes efficiently and stably into target cells and tissues. Those working on systems for regulating the expression of genes once delivered have often been accused of trying to run before they can walk. Yet regulation is likely to be essential if gene therapy is to realize its full potential as a mainstream clinical option for delivering proteins. Dramatic progress has been made in designing and testing systems in which expression is controlled by orally active drugs. The next few years should see the first clinical trials of drug-regulated gene therapies.  (+info)

Differential immune responses to alpha-gal epitopes on xenografts and allografts: implications for accommodation in xenotransplantation. (67/2857)

Xenograft recipients produce large amounts of high-affinity anti-Gal IgG in response to Galalpha1-3Galbeta1- 4GlcNAc-R (alpha-gal) epitopes on the graft. In contrast, ABO-mismatched allograft recipients undergo "accommodation," a state of very weak immune response to ABO antigens. These differences in anti-carbohydrate immune response were studied in alpha1,3galactosyltransferase knock-out mice. Pig kidney membranes administered to these mice elicited extensive production of anti-Gal IgG, whereas allogeneic kidney membranes expressing alpha-gal epitopes elicited only a weak anti-Gal IgM response. Anti-Gal IgG response to xenograft membranes depended on helper T cell activation and was inhibited by anti-CD40L antibody. These T cells were activated by xenopeptides and not by alpha-gal epitopes. Moreover, allogeneic cell membranes manipulated to express xenoproteins also induced anti-Gal IgG response. Xenoglycoproteins with alpha-gal epitopes are processed by anti-Gal B cells. Xenopeptides presented by these cells activate a large repertoire of helper T cells required for the differentiation of anti-Gal B cells into cells secreting anti-Gal IgG. Alloglycoproteins with alpha- gal epitopes have very few immunogenic peptides and fail to activate helper T cells. Similarly, ineffective helper T-cell activation prevents a strong immune response to blood group antigens in ABO-mismatched allograft recipients, thus enabling the development of accommodation.  (+info)

The evolution of song repertoires and immune defence in birds. (68/2857)

Song repertoires (the number of different song types sung by a male) in birds provide males with an advantage in sexual selection because females prefer males with large repertoires, and females may benefit because offspring sired by preferred males have high viability. Furthermore, males with large repertoires suffer less from malarial parasites, indicating that a large repertoire may reflect health status. We hypothesize that sexual selection may cause a coevolutionary increase in parasite virulence and host immune defence because sexual selection increases the risk of multiple infections that select for high virulence. Alternatively, a female mate preference for healthy males will affect the coevolutionary dynamics of host-parasite interactions by selecting for increased virulence and hence high investment by hosts in immune function. In a comparative study of birds, repertoire size and relative size of the spleen, which is an important immune defence organ, were strongly, positively correlated accounting for almost half of the variance. This finding suggests that host-parasite interactions have played an important role in the evolution of song repertoires in birds.  (+info)

The human corpus luteum: remodelling during luteolysis and maternal recognition of pregnancy. (69/2857)

The marked tissue remodelling associated with luteolysis involves increased expression and activity of matrix metalloproteinases (MMPs) and an influx of immune cells, notably macrophages. Since the corpus luteum expresses high concentrations of specific tissue inhibitors of MMPs, it is clear that it is not only the increased activity of MMPs that is important, but also their tissue localization. Human chorionic gonadotrophin inhibits both MMP expression and macrophage influx in the rescued corpus luteum of early pregnancy. However, macrophages and the main cellular sources of MMPs in the corpus luteum do not express LH-hCG receptors. Therefore, it is likely that products of the steroidogenic cells, which do express LH-hCG receptors, are involved in the differential paracrine regulation of MMP expression and macrophage influx during luteolysis and maternal recognition of pregnancy.  (+info)

Immunity to onchocerciasis: cells from putatively immune individuals produce enhanced levels of interleukin-5, gamma interferon, and granulocyte-macrophage colony-stimulating factor in response to Onchocerca volvulus larval and male worm antigens. (70/2857)

Antigen-specific interleukin-5 (IL-5), gamma interferon (IFN-gamma), and granulocyte-macrophage colony-stimulating factor (GM-CSF) responses in individuals living in an area of hyperendemicity for onchocerciasis in Cameroon were examined. The responses against antigens prepared from Onchocerca volvulus third-stage larvae (L3), molting L3 (mL3), and crude extract from adult males (M-OvAg) were compared to the responses against antigens from adult female worms and skin microfilariae. Cytokine responses for the putatively immune individuals (PI) and the infected individuals (INF) were compared. A differential cytokine profile of IL-5 (Th2 phenotype) and IFN-gamma (Th1 phenotype) was found in these individuals in response to the antigens. In both the PI and the INF, Th2 responses against all the antigens tested were dominant. However, in the PI group as a whole, there was an enhanced Th2 response against the larval antigens and the adult male and adult female antigens, and a Th1 response in a subgroup of the PI (27 to 54.5%) against L3, mL3, and M-OvAg antigens was present. While the PI produced significantly higher levels of GM-CSF against L3, mL3, and M-OvAg antigens than the INF, there was no difference in the GM-CSF responses of the groups against the other antigens. The present study indicated that, in comparison to the INF, the PI have distinct larva-specific and adult male-specific cytokine responses, thus supporting the premise that immunological studies of the PI would lead to the identification of immune mechanisms and the target genes that play a role in protective immunity.  (+info)

Antibody-mediated elimination of the obligate intracellular bacterial pathogen Ehrlichia chaffeensis during active infection. (71/2857)

It is generally accepted that cellular, but not humoral immunity, plays an important role in host defense against intracellular bacteria. However, studies of some of these pathogens have provided evidence that antibodies can provide immunity if present during the initiation of infection. Here, we examined immunity against infection by Ehrlichia chaffeensis, an obligate intracellular bacterium that causes human monocytic ehrlichiosis. Studies with mice have demonstrated that immunocompetent strains are resistant to persistent infection but that SCID mice become persistently and fatally infected. Transfer of immune serum or antibodies obtained from immunocompetent C57BL/6 mice to C57BL/6 scid mice provided significant although transient protection from infection. Bacterial clearance was observed when administration occurred at the time of inoculation or well after infection was established. The effect was dose dependent, occurred within 2 days, and persisted for as long as 2 weeks. Weekly serum administration prolonged the survival of susceptible mice. Although cellular immunity is required for complete bacterial clearance, the data show that antibodies can play a significant role in the elimination of this obligate intracellular bacterium during active infection and thus challenge the paradigm that humoral responses are unimportant for immunity to such organisms.  (+info)

CD8(+) T-cell priming against a nonsecreted Listeria monocytogenes antigen is independent of the antimicrobial activities of gamma interferon. (72/2857)

Sublethal infection of mice with recombinant Listeria monocytogenes expressing a model epitope in either secreted or nonsecreted form results in similar CD8(+) T-cell priming. Since nonsecreted bacterial proteins have no obvious access to the endogenous major histocompatibility complex (MHC) class I presentation pathway, presentation of these antigens requires destruction of the bacterium to reveal the nonsecreted molecules to an exogenous MHC class I presentation pathway. Gamma interferon (IFN-gamma), a cytokine made by multiple cell types in response to L. monocytogenes infection, could be required for exogenous presentation of nonsecreted bacterial antigens via its capacity to upregulate the expression of molecules involved in antigen presentation, its capacity to activate macrophages to kill bacteria to expose nonsecreted molecules or both. IFN-gamma knockout (KO) mice were used to address the requirement for IFN-gamma in CD8(+) T-cell priming against (i) a model exogenous antigen and (ii) secreted and nonsecreted L. monocytogenes antigens. We demonstrate that IFN-gamma KO mice are capable of cross-presenting the model exogenous antigen ovalbumin to prime CD8(+) T-cell responses that are only slightly weaker than that in wild-type (WT) mice. Despite their extreme susceptibility to primary L. monocytogenes infection, previously immunized and naive IFN-gamma KO mice were able to generate CD8(+) T-cell responses against both secreted and nonsecreted L. monocytogenes antigens which were similar to responses of WT mice. Interestingly, IFN-gamma KO mice were as capable as WT mice in mediating the characteristic drop in bacterial load in the liver at 4 h postinfection, although the IFN-gamma KO mice have exacerbated bacterial loads as early as 24 h postinfection. These results demonstrate that the regulatory functions of IFN-gamma are not required for priming of CD8(+) T cells by cross-presentation of a model exogenous antigen or in response to a nonsecreted L. monocytogenes antigen. In addition, the capacity of IFN-gamma to activate the microbicidal activities of macrophages is not required for the very early innate immune response to L. monocytogenes or priming of CD8(+) T cells against a nonsecreted bacterial antigen.  (+info)