Recapitulation of normal and abnormal BioBreeding rat T cell development in adult thymus organ culture. (17/11788)

Congenitally lymphopenic diabetes-prone (DP) BioBreeding (BB) rats develop spontaneous T cell-dependent autoimmunity. Coisogenic diabetes-resistant (DR) BB rats are not lymphopenic and are free of spontaneous autoimmune disease, but become diabetic in response to depletion of RT6+ T cells. The basis for the predisposition to autoimmunity in BB rats is unknown. Abnormal T cell development in DP-BB rats can be detected intrathymically, and thymocytes from DR-BB rats adoptively transfer diabetes. The mechanisms underlying these T cell developmental abnormalities are not known. To study these processes, we established adult thymus organ cultures (ATOC). We report that cultured DR- and DP-BB rat thymi generate mature CD4 and CD8 single-positive cells with up-regulated TCRs. DR-BB rat cultures also generate T cells that express RT6. In contrast, DP-BB rat cultures generate fewer CD4+, CD8+, and RT6+ T cells. Analysis of the cells obtained from ATOC suggested that the failure of cultured DP-BB rat thymi to generate T cells with a mature phenotype is due in part to an increased rate of apoptosis. Consistent with this inference, we observed that addition of the general caspase inhibitor Z-VAD-FMK substantially increases the number of both mature and immature T cells produced by DP-BB rat ATOC. We conclude that cultured DR-BB and DP-BB rat thymi, respectively, recapitulate the normal and abnormal T cell developmental kinetics and phenotypes observed in these animals in vivo. Such cultures should facilitate identification of the underlying pathological processes that lead to immune dysfunction and autoimmunity in BB rats.  (+info)

In vivo selection of neutralization-resistant virus variants but no evidence of B cell tolerance in lymphocytic choriomeningitis virus carrier mice expressing a transgenic virus-neutralizing antibody. (18/11788)

B cell tolerance is maintained by active deletion and functional anergy of self-reactive B cells depending on the time, amount, and site of the self-antigen expression. To study B cell tolerance toward a transplacentally transmitted viral Ag, we crossed transgenic mice expressing the mu heavy and the kappa light chain of the lymphocytic choriomeningitis virus (LCMV)-neutralizing mAb KL25 (HL25-transgenic mice) with persistently infected LCMV carrier mice. Although HL25-transgenic LCMV carrier mice exhibited the same high virus titers as nontransgenic LCMV carrier mice, no evidence for B cell tolerance was found. In contrast, enhanced LCMV-neutralizing Ab titers were measured that, however, did not clear the virus. Instead, LCMV isolates from different tissues turned out to be neutralization resistant Ab escape variants expressing different substitutions of amino acid Asn119 of the LCMV-glycoprotein 1 that displays the neutralizing B cell epitope. Virus variants with the same mutations were also selected in vitro in the presence of the transgenic mAb KL25 confirming that substitutions of Asn119 have been selected by LCMV-neutralizing Abs. Thus, despite abundant expression of viral neo-self-antigen in HL25-transgenic LCMV carrier mice, transgenic B cells expressing LCMV-neutralizing Abs were rather stimulated than tolerized and neutralization resistant Ab escape variants were selected in vivo.  (+info)

Two mechanisms for the non-MHC-linked resistance to spontaneous autoimmunity. (19/11788)

Genetic susceptibility and resistance to most autoimmune disorders are associated with highly polymorphic genes of the MHC and with non-MHC-linked polygenic modifiers. It is known that non-MHC-linked polymorphisms can override or enhance the susceptibility to an autoimmune disease provided by pathogenic MHC genes, but the mechanisms remain elusive. In this study, we have followed the fate of two highly diabetogenic beta cell-specific T cell receptors (Kd and I-Ag7 restricted, respectively) in NOR/Lt mice, which are resistant to autoimmune diabetes despite expressing two copies of the diabetogenic MHC haplotype H-2g7. We show that at least two mechanisms of non-MHC-linked control of pathogenic T cells operate in these mice. One segregates as a recessive trait and is associated with a reduction in the peripheral frequency of diabetogenic CD8+ (but not CD4+) T cells. The other segregates as a dominant trait and is mediated by IL-4- and TGF-beta1-independent immune suppressive functions provided by lymphocytes that target diabetogenic CD4+ and CD8+ T cells, without causing their deletion, anergy, immune deviation, or ignorance. These results provide explanations as to how non-MHC-linked polymorphisms can override the susceptibility to an autoimmune disease provided by pathogenic MHC haplotypes, and demonstrate that protective non-MHC-linked genes may selectively target specific lymphoid cell types in cellularly complex autoimmune responses.  (+info)

Enhancement of the Listeria monocytogenes p60-specific CD4 and CD8 T cell memory by nonpathogenic Listeria innocua. (20/11788)

The contact of T cells to cross-reactive antigenic determinants expressed by nonpathogenic environmental micro-organisms may contribute to the induction or maintenance of T cell memory. This hypothesis was evaluated in the model of murine Listeria monocytogenes infection. The influence of nonpathogenic L. innocua on the L. monocytogenes p60-specific T cell response was analyzed. We show that some CD4 T cell clones raised against purified p60 from L. monocytogenes cross-react with p60 purified from L. innocua. The L. monocytogenes p60-specific CD4 T cell clone 1A recognized the corresponding L. innocua p60 peptide QAAKPAPAPSTN, which differs only in the first amino acid residue. In vitro experiments revealed that after L. monocytogenes infection of APCs, MHC class I-restricted presentation of p60 occurs, while MHC class II-restricted p60 presentation is inhibited. L. innocua-infected cells presented p60 more weakly but equally well in the context of both MHC class I and MHC class II. In contrast to these in vitro experiments the infection of mice with L. monocytogenes induced a strong p60-specific CD4 and CD8 T cell response, while L. innocua infection failed to induce p60-specific T cells. L. innocua booster infection, however, expanded p60-specific memory T cells induced by previous L. monocytogenes infection. In conclusion, these findings suggest that infection with a frequently occurring environmental bacterium such as L. innocua, which is nonpathogenic and not adapted to intracellular replication, can contribute to the maintenance of memory T cells specific for a related intracellular pathogen.  (+info)

Resistance to herpetic stromal keratitis in immunized B-cell-deficient mice. (21/11788)

This study evaluates the role of antibody as an indicator of immunity to ocular challenge with herpes simplex virus (HSV). Two genotypes of mice, BALB/c or BALB/c with mu-chain knockout (muK/O; which lack functional B cells), were immunized systemically either with nonvirulent infectious virus or with a eukaryotic expression plasmid encoding glycoprotein B (gB). Whereas naive muK/O mice were 10- to 100-fold more susceptible to HSV infection than BALB/c mice, following immunization both groups showed similar levels of resistance to ocular challenge. Thus both HSV-immunized groups cleared virus within 3 days and showed no signs of ocular lesions. gB DNA-immunized mice cleared virus less rapidly (5 days), and the incidence of lesions was 10 and 25% in BALB/c and muK/O mice, respectively. Since muK/O mice failed to produce detectable anti-HSV antibody, the mechanism of rapid viral removal was assumed to have a T cell basis. However, T cells would likely not mediate any protection directly since such cells were absent in infected corneas during clearance. A likely mechanism of immunity could involve innate defenses, perhaps enhanced by the action of cytokines released from antigen-reactive CD4+ cells in vascularized tissue adjacent to the cornea. Thus an abrupt inflammatory response consisting principally of neutrophils occurred in the corneal stroma in immune mice, and this subsided when virus disappeared. These data reveal that even though the deficiency in generating antibody renders mice more susceptible to HSV infection, once primed, resistance to disease expression is mediated solely by the cellular components and their products.  (+info)

Intracranial arteries of human fetuses are more resistant to hypercholesterolemia-induced fatty streak formation than extracranial arteries. (22/11788)

BACKGROUND: Atherosclerotic lesions in intracranial arteries occur later and are less extensive than in extracranial arteries. To investigate potential mechanisms responsible for this difference, in particular the atherogenic response to hypercholesterolemia and LDL oxidation, we compared the extent of fatty streak formation and the composition of these very early lesions in intracranial arteries of human fetuses from normocholesterolemic and hypercholesterolemic mothers with those in extracranial arteries. METHODS AND RESULTS: Lesions were quantified by computer-assisted image analysis of 30 oil red O-stained sections, each from the middle cerebral, basilar, and common carotid arteries and the abdominal aorta of human fetuses (spontaneous abortions and premature newborns who died within 12 hours of birth; both of fetal age 6.2+/-1.3 months) from 43 hypercholesterolemic mothers and 34 normocholesterolemic mothers. Macrophages, apolipoprotein B, and 2 epitopes of oxidized LDL in lesions were determined immunocytochemically. Activities of superoxide dismutase, catalase, and glutathione peroxidase in the arterial wall were also determined. Lesion numbers and sizes were dramatically greater in the abdominal aorta (area of the largest lesion per section: 66.5+/-10.9 x10(3) microm2) and the carotid (11. 6+/-5.3 x10(3) microm2) than in the basilar and middle cerebral artery (0.4+/-0.1 and 0.8+/-0.2 x10(3) microm2, respectively; P<0. 0001). Hypercholesterolemia resulted in a significant increase of lesion size in extracranial arteries but only a marginal increase in intracranial arteries. In analogy, hypercholesterolemia induced a much greater increase in the intimal presence of macrophages, apolipoprotein B, and oxidized LDL (oxidation-specific epitopes) in extracranial than in intracranial arteries. Immunocytochemistry did not indicate that lesions of intracranial arteries contain relatively less oxidized LDL than similar-size lesions of extracranial arteries. Activities of Mn-superoxide dismutase but not of Zn-superoxide dismutase, catalase, or glutathione peroxidase were significantly higher in both intracranial arteries. CONCLUSIONS: Exposure to hypercholesterolemia during fetal development results in extensive formation of fatty streaks in extracranial but not intracranial arteries. The fact that such a difference in lesion formation occurs in the absence of many other atherogenic risk factors found later in life suggests that differences in the atherogenic response to hypercholesterolemia are an important contributor to the slower onset of the disease in intracranial vessels in adults. Fetal arteries may allow elucidation of the mechanisms responsible, for example, better protection of intracranial arteries against free radical-mediated atherogenic processes.  (+info)

Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. (23/11788)

Pre-inoculation of plants with a pathogen that induces necrosis leads to the development of systemic acquired resistance (SAR) to subsequent pathogen attack [1]. The phenylpropanoid-derived compound salicylic acid (SA) is necessary for the full expression of both local resistance and SAR [2] [3]. A separate signaling pathway involving jasmonic acid (JA) is involved in systemic responses to wounding and insect herbivory [4] [5]. There is evidence both supporting and opposing the idea of cross-protection against microbial pathogens and insect herbivores [6] [7]. This is a controversial area because pharmacological experiments point to negative cross-talk between responses to systemic pathogens and responses to wounding [8] [9] [10], although this has not been demonstrated functionally in vivo. Here, we report that reducing phenylpropanoid biosynthesis by silencing the expression of phenylalanine ammonialyase (PAL) reduces SAR to tobacco mosaic virus (TMV), whereas overexpression of PAL enhances SAR. Tobacco plants with reduced SAR exhibited more effective grazing-induced systemic resistance to larvae of Heliothis virescens, but larval resistance was reduced in plants with elevated phenylpropanoid levels. Furthermore, genetic modification of components involved in phenylpropanoid synthesis revealed an inverse relationship between SA and JA levels. These results demonstrate phenylpropanoid-mediated cross-talk in vivo between microbially induced and herbivore-induced pathways of systemic resistance.  (+info)

Tobacco mosaic virus virulence and avirulence. (24/11788)

In celebration of a century of research on tobacco mosaic virus that initiated the science of virology, I review recent progress relative to earlier contributions concerning how viruses cause diseases of plants and how plants defend themselves from viruses.  (+info)