Adrenergic transmission facilitates extinction of conditional fear in mice. (1/90)

Extinction of classically conditioned fear, like its acquisition, is active learning, but little is known about its molecular mechanisms. We recently reported that temporal massing of conditional stimulus (CS) presentations improves extinction memory acquisition, and suggested that temporal spacing was less effective because individual CS exposures trigger two opposing processes: (1) fear extinction, which is favored by CS massing, and (2) fear incubation (increase), which is favored by spacing. We here report the effects of manipulating the adrenergic system during massed or spaced CS presentations in fear-conditioned mice. We administered yohimbine (5 mg/kg), an alpha(2)-receptor antagonist, or propranolol (10 mg/kg), a beta-receptor antagonist, systemically prior to CS presentation sessions and recorded both short- and long-term changes in conditional freezing. Yohimbine treatment facilitated extinction of both cue and context fear with massed protocols. When given before spaced CS presentations, propranolol led to a persistent incubation of cue fear, whereas yohimbine led to persistent extinction, compared with vehicle-treated animals, which showed no change in fear. These results suggest that norepinephrine positively modulates the formation of fear extinction memories in mice. They also provide clear evidence that spaced CS presentations trigger both fear-reducing (extinction) and fear-increasing (incubation) mechanisms.  (+info)

Inactivation of the cerebral NFkappaB pathway inhibits interleukin-1beta-induced sickness behavior and c-Fos expression in various brain nuclei. (2/90)

The behavioral effects of peripherally administered interleukin-1beta (IL-1beta) are mediated by the production of cytokines and other proinflammatory mediators at the level of the blood-brain interface and by activation of neural pathway. To assess whether this action is mediated by NFkappaB activation, rats were injected into the lateral ventricle of the brain with a specific inhibitor of NFkappaB activation, the NEMO Binding Domain (NBD) peptide that has been shown previously to abolish completely IL-1beta-induced NFkappaB activation and Cox-2 synthesis in the brain microvasculature. NFkappaB pathway inactivation significantly blocked the behavioral effects of intraperitoneally administered IL-1beta in the form of social withdrawal and decreased food intake, and dramatically reduced IL-1beta-induced c-Fos expression in various brain regions as paraventricular nucleus, supraoptic nucleus, and lateral part of the central amygdala. These findings strongly support the hypothesis that IL-1beta-induced NFkappaB activation at the blood-brain interface is a crucial step in the transmission of immune signals from the periphery to the brain that underlies further events responsible of sickness behavior.  (+info)

Social defeat stress-induced behavioral responses are mediated by the endogenous kappa opioid system. (3/90)

Previous studies have demonstrated that repeated forced-swim stress-induced behaviors (including analgesia, immobility, and increased drug reward) were mediated by the release of endogenous prodynorphin-derived opioid peptides and subsequent activation of the kappa opioid receptor (KOR). We tested the generality of these effects using a different type of stressful situation: repeated social defeat. C57Bl/6 mice subjected to social defeat stress (SDS) over 3 days showed a characteristic stress-induced immobility and defeated-postural response, as well as stress-induced analgesia (SIA). Daily pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI, 10 mg/kg, i.p.) blocked the SIA and significantly reduced the stress-induced immobility on the second and third days of SDS exposure. In contrast, prodynorphin gene-disrupted mice showed no significant increase in immobility, socially defeated postures, or SIA following repeated exposure to SDS. Since both stress and the kappa opioid system can modulate the response to drugs of abuse, we tested the effects of SDS on cocaine-conditioned place preference (CPP). SDS-exposed mice conditioned with cocaine (15 mg/kg, s.c.) showed significant potentiation of place-preference for the drug-paired chamber over the responses of unstressed mice. Nor-BNI pretreatment blocked stress-induced potentiation of cocaine-CPP. Consistent with this result, mice lacking the prodynorphin gene did not show stress-induced potentiation of cocaine-CPP, whereas wild-type littermates did. The findings suggest that chronic SDS may activate the kappa opioid system to produce analgesia, immobility, social defeat postures, and resulting in a potentiation of the acute rewarding properties of cocaine.  (+info)

Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test and regulate BDNF mRNA expression in rats. (4/90)

Systemically active, nonpeptidic delta opioid receptor agonists have been shown to produce antidepressant and anxiolytic effects in animal models in rodents. In addition, delta agonists have been shown to increase expression of brain-derived neurotrophic factor (BDNF) mRNA, an effect of some antidepressants, which may be important for the clinical efficacy of antidepressant drugs. The present study examined whether a variety of peptidic delta agonists, DPDPE, JOM-13, a systemically active derivative of DPDPE, deltorphin II, and H-Dmt-Tic-NH-CH2-Bid could produce convulsions and antidepressant-like effects in the forced swim test. In addition, some of these compounds were examined for their influence on BDNF mRNA expression. All four agonists dose-dependently decreased immobility in the forced swim test, indicating an antidepressant-like effect. Only JOM-13 produced convulsions at doses required for antidepressant-like effects. In addition, DPDPE increased BDNF mRNA expression, as measured by in situ hybridization, in the frontal cortex. The antidepressant-like effect of the agonists in the forced swim test and the increase in BDNF mRNA expression produced by DPDPE were blocked by the delta antagonist naltrindole. Therefore, activation of the delta receptor by centrally administered peptidic agonists and intravenously administered JOM-13 produces behavioral antidepressant-like effects without producing convulsions, and some peptidic agonists can increase BDNF mRNA expression, however, not as consistently as the systemically active nonpeptidic agonists.  (+info)

Blockade of 5-HT1A receptors by (+/-)-pindolol potentiates cortical 5-HT outflow, but not antidepressant-like activity of paroxetine: microdialysis and behavioral approaches in 5-HT1A receptor knockout mice. (5/90)

Selective serotonin reuptake inhibitors like paroxetine (Prx) often requires 4-6 weeks to achieve clinical benefits in depressed patients. Pindolol shortens this delay and it has been suggested that this effect is mediated by somatodendritic 5-hydroxytryptamine (5-HT) 1A autoreceptors. However clinical data on the beneficial effects of pindolol are conflicting. To study the effects of (+/-)-pindolol-paroxetine administration, we used genetical and pharmacological approaches in 5-HT1A knockout mice (5-HT1A-/-). Two assays, in vivo intracerebral microdialysis in awake mice and the forced swimming test (FST), were used to assess the antidepressant-like effects of this drug combination. Basal levels of extracellular serotonin, 5-HT ([5-HT]ext) in the frontal cortex (FCX) and the dorsal raphe nucleus (DRN) did not differ between the two strains of mice, suggesting a lack of tonic control of 5-HT1A autoreceptors on nerve terminal 5-HT release. Prx (1 and 4 mg/kg) dose-dependently increased cortical [5-HT]ext in both genotypes, but the effects were greater in mutants. The selective 5-HT1A receptor antagonist, WAY-100635 (0.5 mg/kg), or (+/-)-pindolol (5 and 10 mg/kg) potentiated the effects of Prx (4 mg/kg) on cortical [5-HT]ext in 5-HT1A+/+, but not in 5-HT1A-/- mice. Similar responses were obtained following local intra-raphe perfusion by reverse microdialysis of either WAY-100635 or (+/-)-pindolol (100 microM each). In the FST, Prx administration dose-dependently decreased the immobility time in both strains of mice, but the response was much greater in 5HT1A-/- mice. In contrast, (+/-)-pindolol blocked Prx-induced decreases in the immobility time while WAY-100635 had no effect in both genotypes. These findings using 5-HT1A-/- mice confirm that (+/-)-pindolol behaves as an antagonist of 5-HT1A autoreceptor in mice, but its blockade of paroxetine-induced antidepressant-like effects in the FST may be due to its binding to other neurotransmitter receptors.  (+info)

Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. (6/90)

There is growing evidence implicating the glutamate system in the pathophysiology and treatment of mood and anxiety disorders. Glutamatergic neurotransmission is mediated by several receptor subfamilies including multiple NMDA receptor subunits (NR2A-D). However, little is currently understood about the specific roles of NMDA subunits in the mediation of emotional behavior due to a lack of subunit-specific ligands. In the present study, we employed a mouse gene-targeting approach to examine the role of the NR2A subunit in the mediation of anxiety- and depressive-related behaviors. Results showed that NR2A knockout (KO) mice exhibit decreased anxiety-like behavior relative to wild-type littermates (WT) across multiple tests (elevated plus maze, light-dark exploration test, novel open field). NR2A KO mice showed antidepressant-like profiles in the forced swim test and tail suspension test, as compared to WT controls. Locomotor activity in the nonaversive environments of the home cage or a familiar open field were normal in the NR2A KO mice, as were gross neurological and sensory functions, including prepulse inhibition of startle. Taken together, these data demonstrate a selective and robust reduction in anxiety- and depression-related behavior in NMDA receptor NR2A subunit KO mice. Present results support a role for the NR2A subunit in the modulation of emotional behaviors in rodents and provide insight into the role of glutamate in the pathophysiology and treatment of mood and anxiety disorders.  (+info)

Pharmacogenomic evaluation of the antidepressant citalopram in the mouse tail suspension test. (7/90)

The identification of genetic variants regulating antidepressant response in human patients would allow for more individualized, rational, and successful drug treatments. We have previously identified the BALB/cJ inbred mouse strain as highly responsive to the selective serotonin reuptake inhibitor (SSRI) citalopram in the tail suspension test (TST), a widely used and well-established screening paradigm for detecting compounds with antidepressant activity. In contrast, A/J mice did not show a significant response to citalopram in this test despite exposure to equivalent plasma levels of the drug. To identify genetic determinants of this differential response, 506 F2 mice from an intercross between BALB/cJ and A/J mice were phenotyped. Composite interval mapping of 92 mice from the phenotypic extremes revealed three loci on chromosomes 7, 12, and 19 affecting citalopram response in the TST. The quantitative trait locus (QTL) at the telomeric end of chromosome 19 showed the greatest level of significance. Three candidate genes residing in this locus include those for vesicular monoamine transporter 2 (VMAT2, slc18a2), alpha 2A adrenergic receptor (adra2a), and beta 1 adrenergic receptor (adrb1). The protein coding regions of these three genes in BALB/cJ and A/J mice were sequenced and two polymorphisms were found in VMAT2 (Leu117Pro and Ser505Pro), while the transcribed regions of adra2a and adrb1 were of identical sequence between strains. Follow-up studies are needed to determine if the VMAT2 polymorphisms are functional and if they could explain the chromosome 19 QTL. The present quantitative trait study suggests possible candidate genes for human pharmacogenetic studies of therapeutic responses to SSRIs such as citalopram.  (+info)

KCC2-deficient mice show reduced sensitivity to diazepam, but normal alcohol-induced motor impairment, gaboxadol-induced sedation, and neurosteroid-induced hypnosis. (8/90)

GABA(A) receptors mediate both fast phasic inhibitory postsynaptic potentials and slower tonic extrasynaptic inhibition. Hyperpolarizing phasic GABAergic inhibition requires the activity of neuron-specific chloride-extruding potassium-chloride cotransporter KCC2 in adult CNS. However, the possible role of KCC2 in tonic GABAergic inhibition and the associated behaviors is unknown. Here, we have examined the role of KCC2 in phasic vs tonic GABA inhibition by measuring the behavioral effects of pharmacological agents that presumably enhance phasic vs tonic inhibition in mice that retain 15-20% of normal KCC2 protein levels. These KCC2-deficient mice show decreased sensitivity to diazepam-induced sedation and motor impairment consistent with the reported role for KCC2 in fast hyperpolarizing inhibition. In contrast, the mice exhibit normal responses to low-dose alcohol-induced motor impairment, gaboxadol-induced sedation, and neurosteroid-induced hypnosis; behaviors thought to be associated with tonic GABAergic inhibition. Electrophysiological recordings show that the tonic conductance is not affected. The results suggest that KCC2 activity is more critical for behaviors dependent on phasic than tonic GABAergic inhibition.  (+info)