Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. (57/3793)

Previous studies have indicated that advanced age is associated with impaired angiogenesis in part because of reduced levels of vascular endothelial growth factor (VEGF) expression. To investigate potential mechanisms responsible for this age-dependent defect in VEGF expression, aortic smooth muscle cells isolated from young rabbits (ages 6-8 months) or old rabbits (ages 4-5 years) were exposed to normoxic (21% oxygen) or hypoxic (0.1% oxygen) conditions. Hypoxia-induced VEGF expression was significantly lower in old versus young cells. VEGF mRNA stability in hypoxic conditions was similar in both young and old cells. However, transient transfection with a luciferase reporter gene that was transcriptionally regulated by the VEGF promoter revealed a significant defect in VEGF up-regulation following hypoxia in old versus young cells (a 43 versus 117% increase in luciferase activity, p < 0.05); this difference was not seen when a deletion construct lacking the hypoxia-inducible 1 (HIF-1) binding site was used. Moreover, although HIF-1 alpha-mRNA expression was shown to be similar in young and old smooth muscle cells, HIF-1 alpha protein and DNA binding activity were significantly reduced in old versus young smooth muscle cells that were exposed to hypoxia. We propose that age-dependent reduction in hypoxia-induced VEGF expression results from reduced HIF-1 activity and may explain the previously described age-dependent impairment of angiogenesis in response to ischemia.  (+info)

Induction of vascular endothelial growth factor in human astrocytes by lead. Involvement of a protein kinase C/activator protein-1 complex-dependent and hypoxia-inducible factor 1-independent signaling pathway. (58/3793)

The mechanism(s) underlying lead neurotoxicity are not fully elucidated. cDNA expression microarray analysis identified lead-sensitive genes in immortalized human fetal astrocytes (SV-FHA). Of the represented genes expressed, vascular endothelial growth factor (VEGF) was one of the most sensitive. Lead induced VEGF mRNA 3-fold and VEGF protein approximately 2-fold with maximum mRNA induction following incubation with 10 micrometer lead acetate for 24 h. Phorbol 12-myristate 13-acetate (PMA), a potent protein kinase C (PKC) activator, increased VEGF mRNA 2-fold and PKC inhibition by GF-109203 completely blocked VEGF induction by lead. Expression of dominant-negative PKC-epsilon, but not PKC-alpha, completely inhibited VEGF mRNA induction by lead. Lead activated the transcription factor AP-1 and increased AP-1-dependent luciferase expression >2-fold. Transfection of cells with a c-jun dominant-negative effectively inhibited both AP-1 activation and VEGF mRNA induction by lead. Hypoxia-inducible factor 1 (HIF-1) activity in SV-FHAs was moderately increased by lead (86%) and PMA (96%). Pretreatment with GF-109203 completely inhibited these effects of lead and PMA. However, lead did not alter HIF-1-dependent luciferase expression and a HIF-1alpha dominant-negative had no effects on the induction of VEGF mRNA by lead. These findings indicate that lead induces VEGF expression in SV-FHAs via a PKC/AP-1-dependent and HIF-1-independent signaling pathway.  (+info)

Hypoxia and interleukin-1beta stimulate vascular endothelial growth factor production in human proximal tubular cells. (59/3793)

BACKGROUND: Vascular endothelial growth factor (VEGF) promotes angiogenesis and inflammatory reactions. VEGF mRNA is detectable in the proximal tubules of inflamed kidneys but not in normals. In other organs VEGF gene expression is induced by hypoxia and cytokines such as interleukin 1 (IL-1). To identify the cellular mechanisms in control of tubular VEGF production, we studied effects of hypoxia and IL-1beta in VEGF mRNA levels, VEGF secretion, and activity of the hypoxia-inducible dimeric transcription factor 1 (HIF-1alpha/beta) in human proximal tubular epithelial cells (PTECs) in primary culture. METHODS: PTECs were grown in monolayers from human kidneys. Hypoxia was induced by incubation at 3% O2. VEGF mRNA was quantitated by competitive polymerase chain reaction following reverse transcription. VEGF was measured by enzyme-linked immunoassay. HIF-1alpha was demonstrated by Western blot analysis and HIF-1 DNA binding by gel shift assay. RESULTS: Significant amounts of VEGF mRNA and VEGF protein were measured in PTEC extracts and culture media, respectively. Stimulation of VEGF synthesis at low O2 tension and following IL-1beta treatment was detectable at the protein level only. Nuclear HIF-1alpha protein levels and HIF-1 binding to DNA were also increased under these conditions. CONCLUSIONS: PTECs in culture produce VEGF. One mechanism of induction appears to be increased DNA binding of HIF-1 to hypoxia-responsive elements in the VEGF gene promoter. In inflammatory diseases of the kidney, tubular cell-derived VEGF may contribute to microvascular leakage and monocyte extravasation.  (+info)

Expression, ontogeny, and regulation of hypoxia-inducible transcription factors in the human placenta. (60/3793)

Placental hypoxia likely plays an important role in both normal placental development and pathology. Yet, the molecular mechanisms of hypoxia signaling in this organ are virtually unexplored. Therefore, we investigated the expression of the hypoxia inducible transcription factors (HIF) in normal human placentas spanning the first trimester to term. Several key observations emerged: 1) HIF-1 alpha and -2 alpha mRNA were present in placentas of all gestational ages but with greater variability during early pregnancy; 2) overall, HIF-1 alpha mRNA was expressed at a constant level in all placentas, whereas HIF-2 alpha mRNA increased significantly with gestational age; 3) both HIF-1 alpha and -2 alpha protein decreased significantly with gestational age; and 4) HIF-1 alpha and -2 alpha immunoreactivity were overlapping in cellular distribution being expressed by the syncytiotrophoblast, villous cytotrophoblast, and fetoplacental vasculature with both nuclear and cytoplasmic localization. Next, we studied the regulation of these transcription factors by oxygen using placental villous explants in culture from first-trimester and term placentas. The major findings were 1) HIF-1 alpha and -2 alpha protein, but not mRNA, was induced by hypoxia in the placental villous explants; 2) HIF-1 alpha DNA-binding activity was also stimulated by hypoxia; and 3) glucose transporter-1 mRNA (a known target of HIF) was also increased by hypoxia in placental villous explants. We suggest that physiological hypoxia contributes to the increased expression of HIF-1 alpha and -2 alpha protein in early placentas and that regulation of these transcription factors by hypoxia in the human placenta occurs at the level of protein and not mRNA.  (+info)

Carcinogenic metals induce hypoxia-inducible factor-stimulated transcription by reactive oxygen species-independent mechanism. (61/3793)

Nickel (Ni2+) and cobalt (Co2+) mimic hypoxia and were used as a tool to study the role of oxygen sensing and signaling cascades in the regulation of hypoxia-inducible gene expression. These metals can produce oxidative stress; therefore, it was conceivable that reactive oxygen species (ROS) may trigger signaling pathways resulting in the activation of the hypoxia-inducible factor (HIF)-1 transcription factor and up-regulation of hypoxia-related genes. We found that the exposure of A549 cells to Co2+ or Ni2+ produced oxidative stress, and although Co2+ was a more potent producer of ROS than Ni2+, both metals equally increased the expression of Cap43, a hypoxia-regulated gene. The coadministration of hydrogen peroxide with metals induced more ROS; however, this did not further increase the expression of Cap43 mRNA. The free radical scavenger 2-mercaptoethanol completely suppressed ROS generation by CoCl2 and NiCl2 but did not diminish the induced Cap43 gene expression. The activity of the HIF-1 transcription factor as assessed in transient transfection assays was stimulated by Ni2+, hypoxia, and desferrioxamine, but this activation was not diminished when oxidative stress was attenuated nor was HIF-dependent transcription enhanced by hydrogen peroxide. We conclude that ROS are produced during the exposure of cells to metals that mimic hypoxia, but the formation of ROS was not involved in the activation of HIF-1-dependent genes.  (+info)

Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. (62/3793)

The ability to sense and respond to changes in oxygen availability is critical for many developmental, physiological, and pathological processes, including angiogenesis, control of blood pressure, and cerebral and myocardial ischemia. Hypoxia-inducible factor-1alpha (HIF-1alpha) is a basic-helix-loop-helix (bHLH)containing member of the PER-ARNT-SIM (PAS) family of transcription factors that plays a central role in the response to hypoxia. HIF-1alpha, and its relatives HIF-2alpha/endothelial PAS domain protein (EPAS) and HIF-3alpha, are induced in response to hypoxia and serve to coordinately activate the expression of target genes whose products facilitate cell survival under conditions of oxygen deprivation. When cells are exposed to chronic hypoxia, the protective response can fail, resulting in apoptosis. This study shows that transcription of the gene encoding Nip3, a proapoptotic member of the Bcl-2 family of cell death factors, is strongly induced in response to hypoxia. The Nip3 promoter contains a functional HIF-1-responsive element (HRE) and is potently activated by both hypoxia and forced expression of HIF-1alpha. Exposure of cultured cells to chronic hypoxia results in the accumulation of a protein recognized by antibodies raised against Nip3. This study demonstrates a direct link between HIF-1alpha and a proapoptotic member of the Bcl-2 family and offers a reasonable physiological function for members of the Bcl-2 subfamily, including Nip3 and its close relative Nix. These observations indicate that Nip3 may play a dedicated role in the pathological progression of hypoxia-mediated apoptosis, as observed after ischemic injury.  (+info)

Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. (63/3793)

Rheumatoid arthritis and periodontitis are inflammatory diseases modulated by proinflammatory cytokines [e.g. interleukin (IL-1) 1 and tumour necrosis factor alpha], which activate local fibroblasts to do the following: (1) proliferate, (2) induce gene expression and (3) produce destructive metalloproteinases. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric transcription factor (composed of HIF-1alpha and HIF-1beta/aryl hydrocarbon receptor nuclear transporter) that is modulated by hypoxia. HIF-1 binds to and induces several genes containing an HIF-1 consensus-binding site, including vascular endothelial growth factor and several glycolytic enzymes. Through differential screening of a human synovial fibroblast cDNA library, we identified HIF-1alpha as a clone up-regulated by IL-1. The mRNA for HIF-1alpha subunit was increased 3-4-fold by Northern blot analysis after cells had been incubated for 3 h in the presence of IL-1. In addition, IL-1 increased the binding of the heterodimer HIF-1 to the HIF consensus sequence. These results suggest that HIF-1 might have a role in inflammation, possibly in attempting to re-establish homoeostasis.  (+info)

Killing of brain tumor cells by hypoxia-responsive element mediated expression of BAX. (64/3793)

The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE), which can be activated through hypoxia-inducible factor-1 (HIF-1). We transfected plasmids containing multiple copies of HRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HRE copy number, and the degree of hypoxia.  (+info)