Biphasic hypothermia in mice infected with a parasitic nematode, Trichinella spiralis. (73/754)

In BALB/c mice infected with Trichinella spiralis, changes in body temperature (Tb) were observed over 35 days after the infection. T. spiralis infection induced hypothermia two times at 7 and 28 days after infection. The initial decrease persisted for about one week with a peak (37.1 +/- 0.62 degrees C) around 10 days after the infection, while the later phase persisted for at least one week. Both 10 and 35 days after the infection, there were remarkable decreases in Tb. The serum glucose level of infected mice at 10 days was significantly (p < 0.01) decreased compared with that of control mice at the same number of days, while the level in infected mice at 35 days was not decreased. Moreover, the later phase of hypothermia was prevented by the cyclooxygenase inhibitor indomethacin (10 mg/kg i.p.), while the initial phase was not. We conclude that hypothermia was caused by two different mechanisms, involving the effects of hypoglycemia and prostaglandins.  (+info)

CB1 receptors in the preoptic anterior hypothalamus regulate WIN 55212-2 [(4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrr olo[3,2,1ij]quinolin-6-one]-induced hypothermia. (74/754)

The present study investigated the effect of the selective cannabinoid agonist, WIN 55212-2 [(4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrr olo[3,2,1ij]quinolin-6-one], on body temperature. WIN 55212-2 (1, 2.5, 5, and 10 mg/kg, i.m.) induced hypothermia in a dose-dependent manner. The peak hypothermia occurred 60 to 180 min postinjection. Body temperature was still suppressed 5 h after the injection of the highest dose of WIN 55212-2. The selective CB(1) antagonist, SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazol e-3-carboxamide hydrochloride] (5 and 10 mg/kg, i.m.), blocked the WIN 55212-2-induced hypothermia, suggesting that CB(1) receptor activation mediated the hypothermia. In contrast, the selective CB(2) antagonist, SR144528 [N-((1S)-endo-1,3,3-trimethyl bicyclo heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamid e)] (5 mg/kg, i.m.), did not alter the WIN 55212-2-induced hypothermia. Neither SR141716A nor SR144528 alone altered body temperature. WIN 55212-2 (1-30 microg/microl) injected directly into the preoptic anterior hypothalamic nucleus (POAH) induced hypothermia in an immediate and dose-dependent fashion. The hypothermia produced by intra-POAH injection of WIN 55212-2 was brief, with body temperature returning to baseline 60 min postinjection. SR141716A (5 mg/kg, i.m.) abolished the hypothermia induced by intra-POAH injection of WIN 55212-2 (30 microg/microl), indicating that CB(1) receptors in the POAH mediated the hypothermia. The present results confirm the idea that CB(1) receptors mediate the hypothermic response to cannabinoid agonists. Moreover, the present data suggest that 1) the POAH is the central locus for thermoregulation, and 2) CB(1) receptors within the POAH are the primary mediators of cannabinoid-induced hypothermia.  (+info)

Thermal management and blood loss during hip arthroplasty. (75/754)

Perioperative hypotermia is a common, but preventable complication of anaesthesia and surgery. Mild perioperative hypothermia increases the incidence of morbid myocardial outcomes, reduces resistance to surgical wound infections, and prolongs both postanaesthetic recovery and hospitalization. Hypotermia causes a coagulopathy due to inhibition of platelet function. In this short review, we will discuss three studies done in the last 6 years, which explored the influence of perioperative hypotermia and blood loss. All evaluated blood loss during hip arthroplasty and had similar methodologies. Two studies demonstrate that blood loss is increased, especially during surgery, in hypotermic patients while a third study failed to identify any thermal influence on blood loss. The benefits of maintaining perioperative normothermia on blood loss thus remain unclear. We thus continue to recommend that surgical patients be kept normothermic.  (+info)

Influence of captopril and enalapril on some central effects of ethanol. (76/754)

The influence of captopril and enalapril on acute toxicity of ethanol, ethanol-induced hypothermia, ethanol sleeping time has been investigated in mice. Moreover, the combined effect of captopril and enalapril on spontaneous locomotor activity in mice has been examined. The captopril (5 and 20 mg/kg) and enalapril (5 and 20 mg/kg) were injected intraperitoneally i.p. The drugs were given as single or repeated doses for 10 days. It has been shown that the captopril and enalapril administered in single doses decreases, but chronic administration increases acute toxicity of ethanol. Captopril and enalapril in single doses enhanced, but chronic administration inhibits hypothermic effect of ethanol. Captopril and enalapril reduces ethanol sleeping time. Captopril and enalapril administered for 10 days and enalapril in a single dose 20 mg/kg decreases ethanol induced hyperactivity.  (+info)

HSP70 protects against TNF-induced lethal inflammatory shock. (77/754)

The heat shock (HS) response is a universal response activated after exposure to various stimuli. The major HS protein (HSP) is the 72 kDa HSP70 with strong homology in different eukaryotic species. We demonstrate that HS treatment of mice leads to a strong induction of HSP70 in several organs and confers significant protection against lethality induced by tumor necrosis factor (TNF). HS prevents high production of interleukin-6 and nitric oxide and reduces severe damage and apoptosis of the enterocytes in the bowel. Mice deficient in the inducible hsp70.1 gene were no longer protected by HS treatment. We show that HS can be applied successfully in an antitumor protocol based on TNF and interferon-gamma, leading to a significant inhibition of lethality but not to a reduction of antitumoral capacity.  (+info)

Altered frequency responses of sympathetic nerve discharge bursts after IL-1beta and mild hypothermia. (78/754)

Although interleukin-1beta (IL-1beta) administration produces nonuniform changes in the level of sympathetic nerve discharge (SND), the effect of IL-1beta on the frequency-domain relationships between discharges in different sympathetic nerves is not known. Autospectral and coherence analyses were used to determine the effect of IL-1beta and mild hypothermia (60 min after IL-1beta, colonic temperature from 38 degrees C to 36 degrees C) on the relationships between renal-interscapular brown adipose tissue (IBAT) and splenic-lumbar sympathetic nerve discharges in chloralose-anesthetized rats. The following observations were made. 1) IL-1beta did not alter renal-IBAT coherence values in the 0- to 2-Hz frequency band or at the cardiac frequency (CF). 2) Peak coherence values relating splenic-lumbar discharges at the CF were significantly increased after IL-1beta and during hypothermia. 3) Hypothermia after IL-1beta significantly reduced the coupling (0-2 Hz and CF) between renal-IBAT but not splenic-lumbar SND bursts. 4) Combining IL-1beta and mild hypothermia had a greater effect on renal-IBAT SND coherence values than did mild hypothermia alone. These data demonstrate functional plasticity in sympathetic neural circuits and suggest complex relationships between immune products and SND regulation.  (+info)

Environmental thermal stress. (79/754)

Thermal stress from cold and heat can affect health and productivity in a wide range of environmental and workload conditions. Health risks typically occur in the outer zones of heat and cold stress, but are also related to workload. Environmental factors related to thermal stress are reviewed. Individuals undergo thermoregulatory physiologic changes to adapt and these changes are reviewed. Heat and cold related illnesses are reviewed as well as their appropriate therapy. Published standards, thresholds and recommendations regarding work practices, personal protection and types of thermal loads are reviewed.  (+info)

Serotonin 1A receptor activation and hypothermia in humans: lack of evidence for a presynaptic mediation. (80/754)

The hypothermia produced by 5-HT1A agonists had initially been claimed to be caused by the activation of cell body 5-HT1A autoreceptors resulting in decreased 5-HT transmission in laboratory animals. In order to address this issue in humans, 12 healthy volunteers underwent a dietary tryptophan depletion paradigm to decrease 5-HT availability, under double-blind conditions, during which body temperature was monitored following oral administration of the 5-HT1A agonist buspirone (30 mg). In addition, plasma prolactin and growth hormone evaluations, two responses that are mediated via the direct activation of postsynaptic 5-HT1A receptors, were determined. The hypothesis was that if responses are mediated by decreased transmission at postsynaptic 5-HT1A receptors, resulting from dampened 5-HT release as a consequence of 5-HT1A autoreceptors activation, then responses to the exogenous 5-HT1A agonist should be attenuated when 5-HT availability has been markedly decreased beforehand. Buspirone produced the same significant increase in prolactin and growth hormone in the tryptophan-depleted state as in the control condition. Similarly, the degree of hypothermia produced by buspirone was not significantly different in the two experimental conditions. In conclusion, these results strongly suggest that the hypothermia and the increases in prolactin and growth hormone produced by buspirone are attributable to the enhanced activation of postsynaptic 5-HT1A receptors, and not to a decrease in 5-HT transmission resulting from the activation of the 5-HT1A cell body autoreceptors on 5-HT neurons.  (+info)